6,244 research outputs found

    The Binary Energy Harvesting Channel with a Unit-Sized Battery

    Full text link
    We consider a binary energy harvesting communication channel with a finite-sized battery at the transmitter. In this model, the channel input is constrained by the available energy at each channel use, which is driven by an external energy harvesting process, the size of the battery, and the previous channel inputs. We consider an abstraction where energy is harvested in binary units and stored in a battery with the capacity of a single unit, and the channel inputs are binary. Viewing the available energy in the battery as a state, this is a state-dependent channel with input-dependent states, memory in the states, and causal state information available at the transmitter only. We find an equivalent representation for this channel based on the timings of the symbols, and determine the capacity of the resulting equivalent timing channel via an auxiliary random variable. We give achievable rates based on certain selections of this auxiliary random variable which resemble lattice coding for the timing channel. We develop upper bounds for the capacity by using a genie-aided method, and also by quantifying the leakage of the state information to the receiver. We show that the proposed achievable rates are asymptotically capacity achieving for small energy harvesting rates. We extend the results to the case of ternary channel inputs. Our achievable rates give the capacity of the binary channel within 0.03 bits/channel use, the ternary channel within 0.05 bits/channel use, and outperform basic Shannon strategies that only consider instantaneous battery states, for all parameter values.Comment: Submitted to IEEE Transactions on Information Theory, August 201

    Can Feedback Increase the Capacity of the Energy Harvesting Channel?

    Full text link
    We investigate if feedback can increase the capacity of an energy harvesting communication channel where a transmitter powered by an exogenous energy arrival process and equipped with a finite battery communicates to a receiver over a memoryless channel. For a simple special case where the energy arrival process is deterministic and the channel is a BEC, we explicitly compute the feed-forward and feedback capacities and show that feedback can strictly increase the capacity of this channel. Building on this example, we also show that feedback can increase the capacity when the energy arrivals are i.i.d. known noncausally at the transmitter and the receiver

    Communicating Using an Energy Harvesting Transmitter: Optimum Policies Under Energy Storage Losses

    Full text link
    In this paper, short-term throughput optimal power allocation policies are derived for an energy harvesting transmitter with energy storage losses. In particular, the energy harvesting transmitter is equipped with a battery that loses a fraction of its stored energy. Both single user, i.e. one transmitter-one receiver, and the broadcast channel, i.e., one transmitter-multiple receiver settings are considered, initially with an infinite capacity battery. It is shown that the optimal policies for these models are threshold policies. Specifically, storing energy when harvested power is above an upper threshold, retrieving energy when harvested power is below a lower threshold, and transmitting with the harvested energy in between is shown to maximize the weighted sum-rate. It is observed that the two thresholds are related through the storage efficiency of the battery, and are nondecreasing during the transmission. The results are then extended to the case with finite battery capacity, where it is shown that a similar double-threshold structure arises but the thresholds are no longer monotonic. A dynamic program that yields an optimal online power allocation is derived, and is shown to have a similar double-threshold structure. A simpler online policy is proposed and observed to perform close to the optimal policy.Comment: Submitted to IEEE Transactions on Wireless Communications, August 201

    Energy Harvesting Broadband Communication Systems with Processing Energy Cost

    Full text link
    Communication over a broadband fading channel powered by an energy harvesting transmitter is studied. Assuming non-causal knowledge of energy/data arrivals and channel gains, optimal transmission schemes are identified by taking into account the energy cost of the processing circuitry as well as the transmission energy. A constant processing cost for each active sub-channel is assumed. Three different system objectives are considered: i) throughput maximization, in which the total amount of transmitted data by a deadline is maximized for a backlogged transmitter with a finite capacity battery; ii) energy maximization, in which the remaining energy in an infinite capacity battery by a deadline is maximized such that all the arriving data packets are delivered; iii) transmission completion time minimization, in which the delivery time of all the arriving data packets is minimized assuming infinite size battery. For each objective, a convex optimization problem is formulated, the properties of the optimal transmission policies are identified, and an algorithm which computes an optimal transmission policy is proposed. Finally, based on the insights gained from the offline optimizations, low-complexity online algorithms performing close to the optimal dynamic programming solution for the throughput and energy maximization problems are developed under the assumption that the energy/data arrivals and channel states are known causally at the transmitter.Comment: published in IEEE Transactions on Wireless Communication
    • …
    corecore