260 research outputs found

    Improved Markov Models for Terrestrial Free-Space Optical Links

    Get PDF
    Finite-state Markov chains are a useful tool for modelling communication channels with correlated fading and have recently also been applied with success to terrestrial free-space optical communication channels. However, the issue of how such Markov models should be optimised in order to accurately approximate the original continuous fading channel has not been addressed in a systematic manner. In this study, the authors improve on previous proposals by optimising the state space partitioning of the considered models. In particular, they investigate the properties and approximation accuracy of Markov models which are optimised according to information-theoretic considerations. They validate and evaluate their approach using a set of experimental measurements over a 12 km link distance. The obtained results confirm that optimised Markov models can provide better accuracy at lower state complexity, yet there remain shortcomings in capturing the autocovariance of the fading process

    On Limits of Multi-Antenna Wireless Communications in Spatially Selective Channels

    No full text
    Multiple-Input Multiple-Output (MIMO) communications systems using multiantenna arrays simultaneously during transmission and reception have generated significant interest in recent years. Theoretical work in the mid 1990?s showed the potential for significant capacity increases in wireless channels via spatial multiplexing with sparse antenna arrays and rich scattering environments. However, in reality the capacity is significantly reduced when the antennas are placed close together, or the scattering environment is sparse, causing the signals received by different antennas to become correlated, corresponding to a reduction of the effective number of sub-channels between transmit and receive antennas. ¶ By introducing the previously ignored spatial aspects, namely the antenna array geometry and the scattering environment, into a novel channel model new bounds and fundamental limitations to MIMO capacity are derived for spatially constrained, or spatially selective, channels. A theoretically derived capacity saturation point is shown to exist for spatially selective MIMO channels, at which there is no capacity growth with increasing numbers of antennas. Furthermore, it is shown that this saturation point is dependent on the shape, size and orientation of the spatial volumes containing the antenna arrays along with the properties of the scattering environment. ¶ This result leads to the definition of an intrinsic capacity between separate spatial volumes in a continuous scattering environment, which is an upper limit to communication between the volumes that can not be increased with increasing numbers of antennas within. It is shown that there exists a fundamental limit to the information theoretic capacity between two continuous volumes in space, where using antenna arrays is simply one choice of implementation of a more general spatial signal processing underlying all wireless communication systems

    Optical MIMO communication systems under illumination constraints

    Get PDF
    Technology for wireless information access has enabled innovation of 'smart' portable consumer devices. These have been widely adopted and have become an integral part of our daily lives. They need ubiquitous connectivity to the internet to provide value added services, maximize their functionality and create a smarter world to live in. Cisco's visual networking index currently predicts wireless data consumption to increase by 61% per year. This will put additional stress on the already stressed wireless access network infrastructure creating a phenomenon called 'spectrum crunch'. At the same time, the solid state devices industry has made remarkable advances in energy efficient light-emitting-diodes (LED). The lighting industry is rapidly adopting LEDs to provide illumination in indoor spaces. Lighting fixtures are positioned to support human activities and thus are well located to act as wireless access points. The visible spectrum (380 nm - 780 nm) is yet unregulated and untapped for wireless access. This provides unique opportunity to upgrade existing lighting infrastructure and create a dense grid of small cells by using this additional 'optical' wireless bandwidth. Under the above model, lighting fixtures will service dual missions of illumination and access points for optical wireless communication (OWC). This dissertation investigates multiple-input multiple-output (MIMO) optical wireless broadcast system under unique constraints imposed by the optical channel and illumination requirements. Sample indexed spatial orthogonal frequency division multiplexing (SIS-OFDM) and metameric modulation (MM) are proposed to achieve higher spectral efficiency by exploiting dimensions of space and color respectively in addition to time and frequency. SIS-OFDM can provide significant additional spectral efficiency of up to (Nsc/2 - 1) x k bits/sym where Nsc is total number of subcarriers and k is number of bits per underlying spatial modulation symbol. MM always generates the true requested illumination color and has the potential to provide better color rendering by incorporating multiple LEDs. A normalization framework is then developed to analyze performance of optical MIMO imaging systems. Performance improvements of up to 45 dB for optical systems have been achieved by decorrelating spatially separate links by incorporating an imaging receiver. The dissertation also studies the impact of visual perception on performance of color shift keying as specified in IEEE 802.15.7 standard. It shows that non-linearity for a practical system can have a performance penalty of up to 15 dB when compared to the simplified linear system abstraction as proposed in the standard. Luminous-signal-to-noise ratio, a novel metric is introduced to compare performance of optical modulation techniques operating at same illumination intensity. The dissertation then introduces singular value decomposition based OWC system architecture to incorporate illumination constraints independent of communication constraints in a MIMO system. It then studies design paradigm for a multi-colored wavelength division multiplexed indoor OWC system
    • …
    corecore