27,825 research outputs found

    Capacity of ad hoc wireless networks with infrastructure support

    Full text link

    Multi-channel Wireless Networks with Infrastructure Support: Capacity and Delay

    Full text link
    In this paper, we propose a novel multi-channel network with infrastructure support, called an \textit{MC-IS} network, which has not been studied in the literature. To the best of our knowledge, we are the first to study such an \textit{MC-IS} network. Our \textit{MC-IS} network is equipped with a number of infrastructure nodes which can communicate with common nodes using a number of channels where a communication between a common node and an infrastructure node is called an infrastructure communication and a communication between two common nodes is called an ad-hoc communication. Our proposed \textit{MC-IS} network has a number of advantages over three existing conventional networks, namely a single-channel wireless ad hoc network (called an \textit{SC-AH} network), a multi-channel wireless ad hoc network (called an \textit{MC-AH} network) and a single-channel network with infrastructure support (called an \textit{SC-IS} network). In particular, the \textit{network capacity} of our proposed \textit{MC-IS} network is nlogn\sqrt{n \log n} times higher than that of an \textit{SC-AH} network and an \textit{MC-AH} network and the same as that of an \textit{SC-IS} network, where nn is the number of nodes in the network. The \textit{average delay} of our \textit{MC-IS} network is logn/n\sqrt{\log n/n} times lower than that of an \textit{SC-AH} network and an \textit{MC-AH} network, and min(CI,m)\min(C_I,m) times lower than the average delay of an \textit{SC-IS} network, where CIC_I and mm denote the number of channels dedicated for infrastructure communications and the number of interfaces mounted at each infrastructure node, respectively.Comment: 12 pages, 6 figures, 3 table

    Performance analysis of variable Smart Grid traffic over ad hoc Wireless Mesh Networks

    Get PDF
    Recent advances in ad hoc Wireless Mesh Networks (WMN) has posited it as a strong candidate in Smart Grid's Neighbourhood Area Network (NAN) for Advanced Metering Infrastructure (AMI). However, its abysmal capacity and poor multi-hoping performance in harsh dynamic environment will require an improvement to its protocol stacks in order for it to effectively support the variable requirements of application traffic in Smart Grid. This paper presents a classification of Smart Grid traffics and examines the performance of HWMP (which is the default routing protocol of the IEEE 802.11s standard) with the Optimised Link State Routing (OLSR) protocol in a NAN based ad hoc WMN. Results from simulations in ns-3 show that HWMP does not outperform OLSR. This indicates that cross layer modifications can be developed in OLSR protocol to address the routing challenges in a NAN based ad hoc WMN

    Network-Layer Resource Allocation for Wireless Ad Hoc Networks

    Get PDF
    This thesis contributes toward the design of a quality-of-service (QoS) aware network layer for wireless ad hoc networks. With the lack of an infrastructure in ad hoc networks, the role of the network layer is not only to perform multihop routing between a source node and a destination node, but also to establish an end-to-end connection between communicating peers that satisfies the service level requirements of multimedia applications running on those peers. Wireless ad hoc networks represent autonomous distributed systems that are infrastructure-less, fully distributed, and multi-hop in nature. Over the last few years, wireless ad hoc networks have attracted significant attention from researchers. This has been fueled by recent technological advances in the development of multifunction and low-cost wireless communication gadgets. Wireless ad hoc networks have diverse applications spanning several domains, including military, commercial, medical, and home networks. Projections indicate that these self-organizing wireless ad hoc networks will eventually become the dominant form of the architecture of telecommunications networks in the near future. Recently, due to increasing popularity of multimedia applications, QoS support in wireless ad hoc networks has become an important yet challenging objective. The challenge lies in the need to support the heterogeneous QoS requirements (e.g., data rate, packet loss probability, and delay constraints) for multimedia applications and, at the same time, to achieve efficient radio resource utilization, taking into account user mobility and dynamics of multimedia traffic. In terms of research contributions, we first present a position-based QoS routing framework for wireless ad-hoc networks. The scheme provides QoS guarantee in terms of packet loss ratio and average end-to-end delay (or throughput) to ad hoc networks loaded with constant rate traffic. Via cross-layer design, we apply call admission control and temporary bandwidth reservation on discovered routes, taking into consideration the physical layer multi-rate capability and the medium access control (MAC) interactions such as simultaneous transmission and self interference from route members. Next, we address the network-layer resource allocation where a single-hop ad hoc network is loaded with random traffic. As a starting point, we study the behavior of the service process of the widely deployed IEEE 802.11 DCF MAC when the network is under different traffic load conditions. Our study investigates the near-memoryless behavior of the service time for IEEE 802.11 saturated single-hop ad hoc networks. We show that the number of packets successfully transmitted by any node over a time interval follows a general distribution, which is close to a Poisson distribution with an upper bounded distribution distance. We also show that the service time distribution can be approximated by the geometric distribution and illustrate that a simplified queuing system can be used efficiently as a resource allocation tool for single hop IEEE 802.11 ad hoc networks near saturation. After that, we shift our focus to providing probabilistic packet delay guarantee to multimedia users in non-saturated IEEE 802.11 single hop ad hoc networks. We propose a novel stochastic link-layer channel model to characterize the variations of the IEEE 802.11 channel service process. We use the model to calculate the effective capacity of the IEEE 802.11 channel. The channel effective capacity concept is the dual of the effective bandwidth theory. Our approach offers a tool for distributed statistical resource allocation in single hop ad hoc networks, which combines both efficient resource utilization and QoS provisioning to a certain probabilistic limit. Finally, we propose a statistical QoS routing scheme for multihop IEEE 802.11 ad hoc networks. Unlike most of QoS routing schemes in literature, the proposed scheme provides stochastic end-to-end delay guarantee, instead of average delay guarantee, to delay-sensitive bursty traffic sources. Via a cross-layer design approach, the scheme selects the routes based on a geographical on-demand ad hoc routing protocol and checks the availability of network resources by using traffic source and link-layer channel models, incorporating the IEEE 802.11 characteristics and interaction. Our scheme extends the well developed effective bandwidth theory and its dual effective capacity concept to multihop IEEE 802.11 ad hoc networks in order to achieve an efficient utilization of the shared radio channel while satisfying the end-to-end delay bound

    On Capacity and Delay of Multi-channel Wireless Networks with Infrastructure Support

    Full text link
    In this paper, we propose a novel multi-channel network with infrastructure support, called an MC-IS network, which has not been studied in the literature. To the best of our knowledge, we are the first to study such an MC-IS network. Our proposed MC-IS network has a number of advantages over three existing conventional networks, namely a single-channel wireless ad hoc network (called an SC-AH network), a multi-channel wireless ad hoc network (called an MC-AH network) and a single-channel network with infrastructure support (called an SC-IS network). In particular, the network capacity of our proposed MC-IS network is nlogn\sqrt{n \log n} times higher than that of an SC-AH network and an MC-AH network and the same as that of an SC-IS network, where nn is the number of nodes in the network. The average delay of our MC-IS network is logn/n\sqrt{\log n/n} times lower than that of an SC-AH network and an MC-AH network, and min{CI,m}\min\{C_I,m\} times lower than the average delay of an SC-IS network, where CIC_I and mm denote the number of channels dedicated for infrastructure communications and the number of interfaces mounted at each infrastructure node, respectively. Our analysis on an MC-IS network equipped with omni-directional antennas only has been extended to an MC-IS network equipped with directional antennas only, which are named as an MC-IS-DA network. We show that an MC-IS-DA network has an even lower delay of c2πθCI\frac{c}{\lfloor \frac{2\pi}{\theta}\rfloor \cdot C_I} compared with an SC-IS network and our MC-IS network. For example, when CI=12C_I=12 and θ=π12\theta=\frac{\pi}{12}, an MC-IS-DA network can further reduce the delay by 24 times lower that of an MC-IS network and reduce the delay by 288 times lower than that of an SC-IS network.Comment: accepted, IEEE Transactions on Vehicular Technology, 201

    Trusted Ambient community for self-securing hybrid networks

    Get PDF
    An ad-hoc network is a group of wireless terminals that possess the ability to automatically organise themselves into a radio network, in which each terminal can perform the duties of both end node as well as router. A network so formed has the particular characteristics of being dynamic by nature, being inherently incapable of relying on any pre-existing infrastructure or centralised administration system as well as being unique in that it uses Hertzian transmission with air as its medium. This ad hoc communication capacity, together with multi technology support and more classical cellular access to networks - or to the Internet - is the fundamental network architecture for what is nowadays called . This architecture is sometimes denoted hybrid networks. These are the characteristics that render hybrid networks particularly vulnerable to attack. The security models employed in other infrastructure based networks (wireless or otherwise) are inapplicable in ad hoc networks, due to their design based on the fundamental principle of a reliable, fixed trusted third party or an established addressing system. We propose, in this paper, a solution that addresses the specific needs of ad hoc networks. First, we describe the paradox presented by the contrasting needs for mobility as well as strong security in ad hoc / hybrid networks. Second we describe our proposed solution, a , which uses the concept of trust transmission to form a mobile version of an infrastructure: an . As the ambient community grow in terms of members, the trust seed becomes capable of distributing trust to more and more entities. However, the originality of our contribution resides in the proposition of a new key agreement protocol, conceived to distribute a secret between ad-hoc nodes without ever transmitting it via a non-secure channel, and without any prior configuration. We conclude the document by presenting some perspectives that will allow us to further our work and approach the concept of adaptive trust and ambiances

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201
    corecore