8,613 research outputs found

    Capacity of a Class of Deterministic Relay Channels

    Full text link
    The capacity of a class of deterministic relay channels with the transmitter input X, the receiver output Y, the relay output Y_1 = f(X, Y), and a separate communication link from the relay to the receiver with capacity R_0, is shown to be C(R_0) = \max_{p(x)} \min \{I(X;Y)+R_0, I(X;Y, Y_1) \}. Thus every bit from the relay is worth exactly one bit to the receiver. Two alternative coding schemes are presented that achieve this capacity. The first scheme, ``hash-and-forward'', is based on a simple yet novel use of random binning on the space of relay outputs, while the second scheme uses the usual ``compress-and-forward''. In fact, these two schemes can be combined together to give a class of optimal coding schemes. As a corollary, this relay capacity result confirms a conjecture by Ahlswede and Han on the capacity of a channel with rate-limited state information at the decoder in the special case when the channel state is recoverable from the channel input and the output.Comment: 17 pages, submitted to IEEE Transactions on Information Theor

    A New Achievable Scheme for Interference Relay Channels

    Full text link
    We establish an achievable rate region for discrete memoryless interference relay channels that consist of two source-destination pairs and one or more relays. We develop an achievable scheme combining Han-Kobayashi and noisy network coding schemes. We apply our achievability to two cases. First, we characterize the capacity region of a class of discrete memoryless interference relay channels. This class naturally generalizes the injective deterministic discrete memoryless interference channel by El Gamal and Costa and the deterministic discrete memoryless relay channel with orthogonal receiver components by Kim. Moreover, for the Gaussian interference relay channel with orthogonal receiver components, we show that our scheme achieves a better sum rate than that of noisy network coding.Comment: 18 pages, 4 figure

    Cooperation with an Untrusted Relay: A Secrecy Perspective

    Full text link
    We consider the communication scenario where a source-destination pair wishes to keep the information secret from a relay node despite wanting to enlist its help. For this scenario, an interesting question is whether the relay node should be deployed at all. That is, whether cooperation with an untrusted relay node can ever be beneficial. We first provide an achievable secrecy rate for the general untrusted relay channel, and proceed to investigate this question for two types of relay networks with orthogonal components. For the first model, there is an orthogonal link from the source to the relay. For the second model, there is an orthogonal link from the relay to the destination. For the first model, we find the equivocation capacity region and show that answer is negative. In contrast, for the second model, we find that the answer is positive. Specifically, we show by means of the achievable secrecy rate based on compress-and-forward, that, by asking the untrusted relay node to relay information, we can achieve a higher secrecy rate than just treating the relay as an eavesdropper. For a special class of the second model, where the relay is not interfering itself, we derive an upper bound for the secrecy rate using an argument whose net effect is to separate the eavesdropper from the relay. The merit of the new upper bound is demonstrated on two channels that belong to this special class. The Gaussian case of the second model mentioned above benefits from this approach in that the new upper bound improves the previously known bounds. For the Cover-Kim deterministic relay channel, the new upper bound finds the secrecy capacity when the source-destination link is not worse than the source-relay link, by matching with the achievable rate we present.Comment: IEEE Transactions on Information Theory, submitted October 2008, revised October 2009. This is the revised versio

    Computation Alignment: Capacity Approximation without Noise Accumulation

    Full text link
    Consider several source nodes communicating across a wireless network to a destination node with the help of several layers of relay nodes. Recent work by Avestimehr et al. has approximated the capacity of this network up to an additive gap. The communication scheme achieving this capacity approximation is based on compress-and-forward, resulting in noise accumulation as the messages traverse the network. As a consequence, the approximation gap increases linearly with the network depth. This paper develops a computation alignment strategy that can approach the capacity of a class of layered, time-varying wireless relay networks up to an approximation gap that is independent of the network depth. This strategy is based on the compute-and-forward framework, which enables relays to decode deterministic functions of the transmitted messages. Alone, compute-and-forward is insufficient to approach the capacity as it incurs a penalty for approximating the wireless channel with complex-valued coefficients by a channel with integer coefficients. Here, this penalty is circumvented by carefully matching channel realizations across time slots to create integer-valued effective channels that are well-suited to compute-and-forward. Unlike prior constant gap results, the approximation gap obtained in this paper also depends closely on the fading statistics, which are assumed to be i.i.d. Rayleigh.Comment: 36 pages, to appear in IEEE Transactions on Information Theor

    Capacity Results for Relay Channels with Confidential Messages

    Full text link
    We consider a communication system where a relay helps transmission of messages from {a} sender to {a} receiver. The relay is considered not only as a helper but as a wire-tapper who can obtain some knowledge about transmitted messages. In this paper we study a relay channel with confidential messages(RCC), where a sender attempts to transmit common information to both a receiver and a relay and also has private information intended for the receiver and confidential to the relay. The level of secrecy of private information confidential to the relay is measured by the equivocation rate, i.e., the entropy rate of private information conditioned on channel outputs at the relay. The performance measure of interest for the RCC is the rate triple that includes the common rate, the private rate, and the equivocation rate as components. The rate-equivocation region is defined by the set that consists of all these achievable rate triples. In this paper we give two definitions of the rate-equivocation region. We first define the rate-equivocation region in the case of deterministic encoder and call it the deterministic rate-equivocation region. Next, we define the rate-equivocation region in the case of stochastic encoder and call it the stochastic rate-equivocation region. We derive explicit inner and outer bounds for the above two regions. On the deterministic/stochastic rate-equivocation region we present two classes of relay channels where inner and outer bounds match. We also evaluate the deterministic and stochastic rate-equivocation regions of the Gaussian RCC.Comment: 31 pages, 8 figure

    On the Capacity Region of the Two-user Interference Channel with a Cognitive Relay

    Full text link
    This paper considers a variation of the classical two-user interference channel where the communication of two interfering source-destination pairs is aided by an additional node that has a priori knowledge of the messages to be transmitted, which is referred to as the it cognitive relay. For this Interference Channel with a Cognitive Relay (ICCR) In particular, for the class of injective semi-deterministic ICCRs, a sum-rate upper bound is derived for the general memoryless ICCR and further tightened for the Linear Deterministic Approximation (LDA) of the Gaussian noise channel at high SNR, which disregards the noise and focuses on the interaction among the users' signals. The capacity region of the symmetric LDA is completely characterized except for the regime of moderately weak interference and weak links from the CR to the destinations. The insights gained from the analysis of the LDA are then translated back to the symmetric Gaussian noise channel (GICCR). For the symmetric GICCR, an approximate characterization (to within a constant gap) of the capacity region is provided for a parameter regime where capacity was previously unknown. The approximately optimal scheme suggests that message cognition at a relay is beneficial for interference management as it enables simultaneous over the air neutralization of the interference at both destinations

    A digital interface for Gaussian relay and interference networks: Lifting codes from the discrete superposition model

    Full text link
    For every Gaussian network, there exists a corresponding deterministic network called the discrete superposition network. We show that this discrete superposition network provides a near-optimal digital interface for operating a class consisting of many Gaussian networks in the sense that any code for the discrete superposition network can be naturally lifted to a corresponding code for the Gaussian network, while achieving a rate that is no more than a constant number of bits lesser than the rate it achieves for the discrete superposition network. This constant depends only on the number of nodes in the network and not on the channel gains or SNR. Moreover the capacities of the two networks are within a constant of each other, again independent of channel gains and SNR. We show that the class of Gaussian networks for which this interface property holds includes relay networks with a single source-destination pair, interference networks, multicast networks, and the counterparts of these networks with multiple transmit and receive antennas. The code for the Gaussian relay network can be obtained from any code for the discrete superposition network simply by pruning it. This lifting scheme establishes that the superposition model can indeed potentially serve as a strong surrogate for designing codes for Gaussian relay networks. We present similar results for the K x K Gaussian interference network, MIMO Gaussian interference networks, MIMO Gaussian relay networks, and multicast networks, with the constant gap depending additionally on the number of antennas in case of MIMO networks.Comment: Final versio

    Deterministic Capacity of MIMO Relay Networks

    Full text link
    The deterministic capacity of a relay network is the capacity of a network when relays are restricted to transmitting \emph{reliable} information, that is, (asymptotically) deterministic function of the source message. In this paper it is shown that the deterministic capacity of a number of MIMO relay networks can be found in the low power regime where \SNR\to0. This is accomplished through deriving single letter upper bounds and finding the limit of these as \SNR\to0. The advantage of this technique is that it overcomes the difficulty of finding optimum distributions for mutual information.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore