64,853 research outputs found

    Directed quantum communication

    Full text link
    We raise the question whether there is a way to characterize the quantum information transport properties of a medium or material. For this analysis the special features of quantum information have to be taken into account. We find that quantum communication over an isotropic medium, as opposed to classical information transfer, requires the transmitter to direct the signal towards the receiver. Furthermore, for large classes of media there is a threshold, in the sense that `sufficiently much' of the signal has to be collected. Therefore, the medium's capacity for quantum communication can be characterized in terms of how the size of the transmitter and receiver has to scale with the transmission distance to maintain quantum information transmission. To demonstrate the applicability of this concept, an n-dimensional spin lattice is considered, yielding a sufficient scaling of d^(n/3) with the distance d

    Characterization of qutrit channels in terms of their covariance and symmetry properties

    Full text link
    We characterize the completely positive trace-preserving maps on qutrits (qutrit channels) according to their covariance and symmetry properties. Both discrete and continuous groups are considered. It is shown how each symmetry group restricts arbitrariness in the parameters of the channel to a very small set. Although the explicit examples are related to qutrit channels, the formalism is sufficiently general to be applied to qudit channels

    Entanglement can completely defeat quantum noise

    Get PDF
    We describe two quantum channels that individually cannot send any information, even classical, without some chance of decoding error. But together a single use of each channel can send quantum information perfectly reliably. This proves that the zero-error classical capacity exhibits superactivation, the extreme form of the superadditivity phenomenon in which entangled inputs allow communication over zero capacity channels. But our result is stronger still, as it even allows zero-error quantum communication when the two channels are combined. Thus our result shows a new remarkable way in which entanglement across two systems can be used to resist noise, in this case perfectly. We also show a new form of superactivation by entanglement shared between sender and receiver.Comment: 4 pages, 1 figur

    New Phase Transitions in Optimal States for Memory Channels

    Full text link
    We investigate the question of optimal input ensembles for memory channels and construct a rather large class of Pauli channels with correlated noise which can be studied analytically with regard to the entanglement of their optimal input ensembles. In a more detailed study of a subclass of these channels, the complete phase diagram of the two-qubit channel, which shows three distinct phases is obtained. While increasing the correlation generally changes the optimal state from separable to maximally entangled states, this is done via an intermediate region where both separable and maximally entangled states are optimal. A more concrete model, based on random rotations of the error operators which mimic the behavior of this subclass of channels is also presented.Comment: 13 pages, Late

    Transition behavior in the capacity of correlated-noisy channels in arbitrary dimensions

    Full text link
    We construct a class of quantum channels in arbitrary dimensions for which entanglement improves the performance of the channel. The channels have correlated noise and when the level of correlation passes a critical value we see a sharp transition in the optimal input states (states which minimize the output entropy) from separable to maximally entangled states. We show that for a subclass of channels with some extra conditions, including the examples which we consider, the states which minimize the output entropy are the ones which maximize the mutual information.Comment: 11 pages, Latex, 4 figures, Accepted for publication in Physical Review
    • …
    corecore