157 research outputs found

    Spectral Efficiency of Multi-User Adaptive Cognitive Radio Networks

    Full text link
    In this correspondence, the comprehensive problem of joint power, rate, and subcarrier allocation have been investigated for enhancing the spectral efficiency of multi-user orthogonal frequency-division multiple access (OFDMA) cognitive radio (CR) networks subject to satisfying total average transmission power and aggregate interference constraints. We propose novel optimal radio resource allocation (RRA) algorithms under different scenarios with deterministic and probabilistic interference violation limits based on a perfect and imperfect availability of cross-link channel state information (CSI). In particular, we propose a probabilistic approach to mitigate the total imposed interference on the primary service under imperfect cross-link CSI. A closed-form mathematical formulation of the cumulative density function (cdf) for the received signal-to-interference-plus-noise ratio (SINR) is formulated to evaluate the resultant average spectral efficiency (ASE). Dual decomposition is utilized to obtain sub-optimal solutions for the non-convex optimization problems. Through simulation results, we investigate the achievable performance and the impact of parameters uncertainty on the overall system performance. Furthermore, we present that the developed RRA algorithms can considerably improve the cognitive performance whilst abide the imposed power constraints. In particular, the performance under imperfect cross-link CSI knowledge for the proposed `probabilistic case' is compared to the conventional scenarios to show the potential gain in employing this scheme

    On the capacity of rate adaptive modulation systems over fading channel

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    OFDM ido tsushin shisutemu ni okeru doitsu chaneru kansho jokyo hoshiki ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3396号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2011/9/15 ; 早大学位記番号:新571

    QoS-driven adaptive resource allocation for mobile wireless communications and networks

    Get PDF
    Quality-of-service (QoS) guarantees will play a critically important role in future mobile wireless networks. In this dissertation, we study a set of QoS-driven resource allocation problems for mobile wireless communications and networks. In the first part of this dissertation, we investigate resource allocation schemes for statistical QoS provisioning. The schemes aim at maximizing the system/network throughput subject to a given queuing delay constraint. To achieve this goal, we integrate the information theory with the concept of effective capacity and develop a unified framework for resource allocation. Applying the above framework, we con-sider a number of system infrastructures, including single channel, parallel channel, cellular, and cooperative relay systems and networks, respectively. In addition, we also investigate the impact of imperfect channel-state information (CSI) on QoS pro-visioning. The resource allocation problems can be solved e±ciently by the convex optimization approach, where closed-form allocation policies are obtained for different application scenarios. Our analyses reveal an important fact that there exists a fundamental tradeoff between throughput and QoS provisioning. In particular, when the delay constraint becomes loose, the optimal resource allocation policy converges to the water-filling scheme, where ergodic capacity can be achieved. On the other hand, when the QoS constraint gets stringent, the optimal policy converges to the channel inversion scheme under which the system operates at a constant rate and the zero-outage capacity can be achieved. In the second part of this dissertation, we study adaptive antenna selection for multiple-input-multiple-output (MIMO) communication systems. System resources such as subcarriers, antennas and power are allocated dynamically to minimize the symbol-error rate (SER), which is the key QoS metric at the physical layer. We propose a selection diversity scheme for MIMO multicarrier direct-sequence code- division-multiple-access (MC DS-CDMA) systems and analyze the error performance of the system when considering CSI feedback delay and feedback errors. Moreover, we propose a joint antenna selection and power allocation scheme for space-time block code (STBC) systems. The error performance is derived when taking the CSI feedback delay into account. Our numerical results show that when feedback delay comes into play, a tradeoff between performance and robustness can be achieved by dynamically allocating power across transmit antennas

    Power Optimisation and Relay Selection in Cooperative Wireless Communication Networks

    Get PDF
    Cooperative communications have emerged as a significant concept to improve reliability and throughput in wireless systems. In cooperative networks, the idea is to implement a scheme in wireless systems where the nodes can harmonize their resources thereby enhancing the network performance in different aspects such as latency, BER and throughput. As cooperation spans from the basic idea of transmit diversity achieved via MIMO techniques and the relay channel, it aims to reap somewhat multiple benefits of combating fading/burst errors, increasing throughput and reducing energy use. Another major benefit of cooperation in wireless networks is that since the concept only requires neighbouring nodes to act as virtual relay antennas, the concept evades the negative impacts of deployment costs of multiple physical antennas for network operators especially in areas where they are difficult to deploy. In cooperative communications energy efficiency and long network lifetimes are very important design issues, the focus in this work is on ad hoc and sensor network varieties where the nodes integrate sensing, processing and communication such that their cooperation capabilities are subject to power optimisation. As cooperation communications leads to trade-offs in Quality of Services and transmit power, the key design issue is power optimisation to dynamically combat channel fluctuations and achieve a net reduction of transmit power with the goal of saving battery life. Recent researches in cooperative communications focus on power optimisation achieved via power control at the PHY layer, and/or scheduling mechanism at the MAC layer. The approach for this work will be to review the power control strategy at the PHY layer, identify their associated trade-offs, and use this as a basis to propose a power control strategy that offers adaptability to channel conditions, the road to novelty in this work is a channel adaptable power control algorithm that jointly optimise power allocation, modulation strategy and relay selection. Thus, a novel relay selection method is developed and implemented to improve the performance of cooperative wireless networks in terms of energy consumption. The relay selection method revolves on selection the node with minimum distance to the source and destination. The design is valid to any wireless network setting especially Ad-hoc and sensor networks where space limitations preclude the implementation of bigger capacity battery. The thesis first investigates the design of relay selection schemes in cooperative networks and the associated protocols. Besides, modulation strategy and error correction code impact on energy consumption are investigated and the optimal solution is proposed and jointly implemented with the relay selection method. The proposed algorithm is extended to cooperative networks in which multiple nodes participate in cooperation in fixed and variable rate system. Thus, multi relay selection algorithm is proposed to improve virtual MIMO performance in terms of energy consumption. Furthermore, motivated by the trend of cell size optimisation in wireless networks, the proposed relay selection method is extended to clustered wireless networks, and jointly implemented with virtual clustering technique. The work will encompass three main stages: First, the cooperative system is designed and two major protocols Decode and Forward (DF) and amplify and forward (AF) are investigated. Second, the proposed algorithm is modelled and tested under different channel conditions with emphasis on its performance using different modulation strategies for different cooperative wireless networks. Finally, the performance of the proposed algorithm is illustrated and verified via computer simulations. Simulation results show that the distance based relay selection algorithm exhibits an improved performance in terms of energy consumption compared to the conventional cooperative schemes under different cooperative communication scenarios

    Optimal cross layer design for CDMA-SFBC wireless systems

    Get PDF
    The demand for high speed reliable wireless services has been rapidly growing. Wireless networks have limited resources while wireless channels suffer from fading, interference and time variations. Furthermore, wireless applications have diverse end to end quality of service (QoS) requirements. The aforementioned challenges require the design of spectrally efficient transmission systems coupled with the collaboration of the different OSI layers i.e. cross layer design. To this end, we propose a code division multiple access (CDMA)-space frequency block coded (SFBC) systems for both uplink and downlink transmissions. The proposed systems exploit code, frequency and spatial diversities to improve reception. Furthermore, we derive closed form expressions for the average bit error rate of the proposed systems. In this thesis, we also propose a cross layer resource allocation algorithm for star CDMA-SFBC wireless networks. The proposed resource allocation algorithm assigns base transceiver stations (BTS), antenna arrays and frequency bands to users based on their locations such that their pair wise channel cross correlation is minimized while each user is assigned channels with maximum coherence time. The cooperation between the medium access control (MAC) and physical layers as applied by the optimized resource allocation algorithm improves the bit error rate of the users and the spectral efficiency of the network. A joint cross layer routing and resource allocation algorithm for multi radio CDMA-SFBC wireless mesh networks is also proposed in this thesis. The proposed cross layer algorithm assigns frequency bands to links to minimize the interference and channel estimation errors experienced by those links. Channel estimation errors are minimized by selecting channels with maximum coherence time. On top, the optimization algorithm routes network traffic such that the average end to end packet delay is minimized while avoiding links with high interference and short coherence time. The cooperation between physical, MAC and network layers as applied by the optimization algorithm provides noticeable improvements in average end to end packet delay and success rat
    corecore