103 research outputs found

    Lifelong Neural Predictive Coding: Learning Cumulatively Online without Forgetting

    Full text link
    In lifelong learning systems, especially those based on artificial neural networks, one of the biggest obstacles is the severe inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this article, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the immensely popular back-propagation of errors. Grounded in the neurocognitive theory of predictive processing, our model adapts its synapses in a biologically-plausible fashion, while another, complementary neural system rapidly learns to direct and control this cortex-like structure by mimicking the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting as compared to standard neural models and outperforms a wide swath of previously proposed methods even though it is trained across task datasets in a stream-like fashion. The promising performance of our complementary system on benchmarks, e.g., SplitMNIST, Split Fashion MNIST, and Split NotMNIST, offers evidence that by incorporating mechanisms prominent in real neuronal systems, such as competition, sparse activation patterns, and iterative input processing, a new possibility for tackling the grand challenge of lifelong machine learning opens up.Comment: Key updates including results on standard benchmarks, e.g., split mnist/fmnist/not-mnist. Task selection/basal ganglia model has been integrate

    How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on Continual Learning and Functional Composition

    Full text link
    A major goal of artificial intelligence (AI) is to create an agent capable of acquiring a general understanding of the world. Such an agent would require the ability to continually accumulate and build upon its knowledge as it encounters new experiences. Lifelong or continual learning addresses this setting, whereby an agent faces a continual stream of problems and must strive to capture the knowledge necessary for solving each new task it encounters. If the agent is capable of accumulating knowledge in some form of compositional representation, it could then selectively reuse and combine relevant pieces of knowledge to construct novel solutions. Despite the intuitive appeal of this simple idea, the literatures on lifelong learning and compositional learning have proceeded largely separately. In an effort to promote developments that bridge between the two fields, this article surveys their respective research landscapes and discusses existing and future connections between them

    An Introduction to Lifelong Supervised Learning

    Full text link
    This primer is an attempt to provide a detailed summary of the different facets of lifelong learning. We start with Chapter 2 which provides a high-level overview of lifelong learning systems. In this chapter, we discuss prominent scenarios in lifelong learning (Section 2.4), provide 8 Introduction a high-level organization of different lifelong learning approaches (Section 2.5), enumerate the desiderata for an ideal lifelong learning system (Section 2.6), discuss how lifelong learning is related to other learning paradigms (Section 2.7), describe common metrics used to evaluate lifelong learning systems (Section 2.8). This chapter is more useful for readers who are new to lifelong learning and want to get introduced to the field without focusing on specific approaches or benchmarks. The remaining chapters focus on specific aspects (either learning algorithms or benchmarks) and are more useful for readers who are looking for specific approaches or benchmarks. Chapter 3 focuses on regularization-based approaches that do not assume access to any data from previous tasks. Chapter 4 discusses memory-based approaches that typically use a replay buffer or an episodic memory to save subset of data across different tasks. Chapter 5 focuses on different architecture families (and their instantiations) that have been proposed for training lifelong learning systems. Following these different classes of learning algorithms, we discuss the commonly used evaluation benchmarks and metrics for lifelong learning (Chapter 6) and wrap up with a discussion of future challenges and important research directions in Chapter 7.Comment: Lifelong Learning Prime

    Planning with arithmetic and geometric attributes

    Get PDF
    Often agents have to learn to act in environments with a mathematical structure. We propose to exploit such structure by augmenting the environment with user-specified attributes equipped with the appropriate geometric and arithmetic structure, bringing substantial gains in sample complexity

    Holographic Generative Memory: Neurally Inspired One-Shot Learning with Memory Augmented Neural Networks

    Get PDF
    Humans quickly parse and categorize stimuli by combining perceptual information and previously learned knowledge. We are capable of learning new information quickly with only a few observations, and sometimes even a single observation. This one-shot learning (OSL) capability is still very difficult to realize in machine learning models. Novelty is commonly thought to be the primary driver for OSL. However, neuroscience literature shows that biological OSL mechanisms are guided by uncertainty, rather than novelty, motivating us to explore this idea for machine learning. In this work, we investigate OSL for neural networks using more robust compositional knowledge representations and a biologically inspired uncertainty mechanism to modulate the rate of learning. We introduce several new neural network models that combine Holographic Reduced Representation (HRR) and Variational Autoencoders. Extending these new models culminates in the Holographic Generative Memory (HGMEM) model. HGMEM is a novel unsupervised memory augmented neural network. It offers solutions to many of the practical drawbacks associated with HRRs while also providing storage, recall, and generation of latent compositional knowledge representations. Uncertainty is measured as a native part of HGMEM operation by applying trained probabilistic dropout to fully-connected layers. During training, the learning rate is modulated using these uncertainty measurements in a manner inspired by our motivating neuroscience mechanism for OSL. Model performance is demonstrated on several image datasets with experiments that reflect our theoretical approach

    Explainability in Deep Reinforcement Learning

    Get PDF
    A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems.Comment: Article accepted at Knowledge-Based System
    • …
    corecore