1,430 research outputs found

    Capacity of Fading Gaussian Channel with an Energy Harvesting Sensor Node

    Full text link
    Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.Comment: 6 Pages, To be presented at IEEE GLOBECOM 201

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Energy harvesting over Rician fading channel: A performance analysis for half-duplex bidirectional sensor networks under hardware impairments

    Get PDF
    In this paper, a rigorous analysis of the performance of time-switching energy harvesting strategy that is applied for a half-duplex bidirectional wireless sensor network with intermediate relay over a Rician fading channel is presented to provide the exact-form expressions of the outage probability, achievable throughput and the symbol-error-rate (SER) of the system under the hardware impairment condition. Using the proposed probabilistic models for wireless channels between mobile nodes as well as for the hardware noises, we derive the outage probability of the system, and then the throughput and SER can be obtained as a result. Both exact analysis and asymptotic analysis at high signal-power-to-noise-ratio regime are provided. Monte Carlo simulation is also conducted to verify the analysis. This work confirms the effectiveness of energy harvesting applied in wireless sensor networks over a Rician fading channel, and can provide an insightful understanding about the effect of various parameters on the system performance.Web of Science186art. no. 1781

    Source-Channel Coding under Energy, Delay and Buffer Constraints

    Get PDF
    Source-channel coding for an energy limited wireless sensor node is investigated. The sensor node observes independent Gaussian source samples with variances changing over time slots and transmits to a destination over a flat fading channel. The fading is constant during each time slot. The compressed samples are stored in a finite size data buffer and need to be delivered in at most dd time slots. The objective is to design optimal transmission policies, namely, optimal power and distortion allocation, over the time slots such that the average distortion at destination is minimized. In particular, optimal transmission policies with various energy constraints are studied. First, a battery operated system in which sensor node has a finite amount of energy at the beginning of transmission is investigated. Then, the impact of energy harvesting, energy cost of processing and sampling are considered. For each energy constraint, a convex optimization problem is formulated, and the properties of optimal transmission policies are identified. For the strict delay case, d=1d=1, 2D2D waterfilling interpretation is provided. Numerical results are presented to illustrate the structure of the optimal transmission policy, to analyze the effect of delay constraints, data buffer size, energy harvesting, processing and sampling costs.Comment: 30 pages, 15 figures. Submitted to IEEE Transactions on Wireless Communication
    corecore