36,014 research outputs found

    Capacity of Molecular Channels with Imperfect Particle-Intensity Modulation and Detection

    Full text link
    This work introduces the particle-intensity channel (PIC) as a model for molecular communication systems and characterizes the properties of the optimal input distribution and the capacity limits for this system. In the PIC, the transmitter encodes information, in symbols of a given duration, based on the number of particles released, and the receiver detects and decodes the message based on the number of particles detected during the symbol interval. In this channel, the transmitter may be unable to control precisely the number of particles released, and the receiver may not detect all the particles that arrive. We demonstrate that the optimal input distribution for this channel always has mass points at zero and the maximum number of particles that can be released. We then consider diffusive particle transport, derive the capacity expression when the input distribution is binary, and show conditions under which the binary input is capacity-achieving. In particular, we demonstrate that when the transmitter cannot generate particles at a high rate, the optimal input distribution is binary.Comment: Accepted at IEEE International Symposium on Information Theory (ISIT

    Information Rates of ASK-Based Molecular Communication in Fluid Media

    Get PDF
    This paper studies the capacity of molecular communications in fluid media, where the information is encoded in the number of transmitted molecules in a time-slot (amplitude shift keying). The propagation of molecules is governed by random Brownian motion and the communication is in general subject to inter-symbol interference (ISI). We first consider the case where ISI is negligible and analyze the capacity and the capacity per unit cost of the resulting discrete memoryless molecular channel and the effect of possible practical constraints, such as limitations on peak and/or average number of transmitted molecules per transmission. In the case with a constrained peak molecular emission, we show that as the time-slot duration increases, the input distribution achieving the capacity per channel use transitions from binary inputs to a discrete uniform distribution. In this paper, we also analyze the impact of ISI. Crucially, we account for the correlation that ISI induces between channel output symbols. We derive an upper bound and two lower bounds on the capacity in this setting. Using the input distribution obtained by an extended Blahut-Arimoto algorithm, we maximize the lower bounds. Our results show that, over a wide range of parameter values, the bounds are close.Comment: 31 pages, 8 figures, Accepted for publication on IEEE Transactions on Molecular, Biological, and Multi-Scale Communication

    Capacity of a Simple Intercellular Signal Transduction Channel

    Full text link
    We model the ligand-receptor molecular communication channel with a discrete-time Markov model, and show how to obtain the capacity of this channel. We show that the capacity-achieving input distribution is iid; further, unusually for a channel with memory, we show that feedback does not increase the capacity of this channel.Comment: 5 pages, 1 figure. To appear in the 2013 IEEE International Symposium on Information Theor

    Bounds on the Capacity of ASK Molecular Communication Channels with ISI

    Get PDF
    There are now several works on the use of the additive inverse Gaussian noise (AIGN) model for the random transit time in molecular communication~(MC) channels. The randomness invariably causes inter-symbol interference (ISI) in MC, an issue largely ignored or simplified. In this paper we derive an upper bound and two lower bounds for MC based on amplitude shift keying (ASK) in presence of ISI. The Blahut-Arimoto algorithm~(BAA) is modified to find the input distribution of transmitted symbols to maximize the lower bounds. Our results show that over wide parameter values the bounds are close.Comment: 7 pages, 4 figures, Accepted in IEEE GLOBECOM 201

    Molecular Communication Using Brownian Motion with Drift

    Full text link
    Inspired by biological communication systems, molecular communication has been proposed as a viable scheme to communicate between nano-sized devices separated by a very short distance. Here, molecules are released by the transmitter into the medium, which are then sensed by the receiver. This paper develops a preliminary version of such a communication system focusing on the release of either one or two molecules into a fluid medium with drift. We analyze the mutual information between transmitter and the receiver when information is encoded in the time of release of the molecule. Simplifying assumptions are required in order to calculate the mutual information, and theoretical results are provided to show that these calculations are upper bounds on the true mutual information. Furthermore, optimized degree distributions are provided, which suggest transmission strategies for a variety of drift velocities.Comment: 20 pages, 7 figures, Accepted for publication in IEEE Trans. on NanoBioscienc
    • …
    corecore