1,734 research outputs found

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Characterization of Ultra Wideband Multiple Access Performance Using Time Hopped-Biorthogonal Pulse Position Modulation

    Get PDF
    The FCC\u27s release of its UWB First Report and Order in April 2002 spawned renewed interest in impulse signaling research. This work combines Time Hopped (TH) multiple access coding with 4-ary UWB Biorthogonal Pulse Position Modulation (TH-BPPM). Multiple access performance is evaluated in a multipath environment for both synchronous and asynchronous networks. Fast time hopping is implemented by replicating and hopping each TH-BPPM symbol NH times. Bit error expressions are derived for biorthogonal TH-BPPM signaling and results compared with previous orthogonal TH-PPM work. Without fast time hopping (NH = 1), the biorthogonal TH-BPPM technique provided gains equivalent to Gray-coded QPSK; improved BER at a given Eb/No and an effective doubling of the data rate. A synchronized network containing up to NT = 15 transmitters yields an average BER improvement (relative to an asynchronous network) of approximately -6.30 dB with orthogonal TH-PPM and approximately 5.9 dB with biorthogonal TH-BPPM. Simulation results indicate that doubling the number of multipath replications (NMP) reduces BER by approximately 3.6 dB. Network performance degrades as NT and NMP increase and synchronized network advantages apparent in the NMP = 0 case diminish with multipath interference present. With fast time hopping (NH \u3e 1) improves BER performance whenever NMP \u3c NH while reducing effective data rate by 1/NH. Compared to the NH = 1 synchronized network, TH-BPPM modulation using NH = 10 provides approximately 5.9 dB improvement at NMP = 0 and approximately 3.6 dB improvement at NMP = 5. At NMP = 10, the BER for the hopped and NH = 1 cases are not statistically different; with NH = 10 hops, BER improvement varies from approximately 0.57 to 0.14 dB (minimal variation between synchronous and asynchronous network performance)

    Evaluation of Overlay/underlay Waveform via SD-SMSE Framework for Enhancing Spectrum Efficiency

    Get PDF
    Recent studies have suggested that spectrum congestion is mainly due to the inefficient use of spectrum rather than its unavailability. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) are two terminologies which are used in the context of improved spectrum efficiency and usage. The DSA concept has been around for quite some time while the advent of CR has created a paradigm shift in wireless communications and instigated a change in FCC policy towards spectrum regulations. DSA can be broadly categorized as using a 1) Dynamic Exclusive Use Model, 2) Spectrum Commons or Open sharing model or 3) Hierarchical Access model. The hierarchical access model envisions primary licensed bands, to be opened up for secondary users, while inducing a minimum acceptable interference to primary users. Spectrum overlay and spectrum underlay technologies fall within the hierarchical model, and allow primary and secondary users to coexist while improving spectrum efficiency. Spectrum overlay in conjunction with the present CR model considers only the unused (white) spectral regions while in spectrum underlay the underused (gray) spectral regions are utilized. The underlay approach is similar to ultra wide band (UWB) and spread spectrum (SS) techniques utilize much wider spectrum and operate below the noise floor of primary users. Software defined radio (SDR) is considered a key CR enabling technology. Spectrally modulated, Spectrally encoded (SMSE) multi-carrier signals such as Orthogonal Frequency Domain Multiplexing (OFDM) and Multi-carrier Code Division Multiple Access (MCCDMA) are hailed as candidate CR waveforms. The SMSE structure supports and is well-suited for SDR based CR applications. This work began by developing a general soft decision (SD) CR framework, based on a previously developed SMSE framework that combines benefits of both the overlay and underlay techniques to improve spectrum efficiency and maximizing the channel capacity. The resultant SD-SMSE framework provides a user with considerable flexibility to choose overlay, underlay or hybrid overlay/underlay waveform depending on the scenario, situation or need. Overlay/Underlay SD-SMSE framework flexibility is demonstrated by applying it to a family of SMSE modulated signals such as OFDM, MCCDMA, Carrier Interferometry (CI) MCCDMA and Transform Domain Communication System (TDCS). Based on simulation results, a performance analysis of Overlay, Underlay and hybrid Overlay/Underlay waveforms are presented. Finally, the benefits of combining overlay/underlay techniques to improve spectrum efficiency and maximize channel capacity are addressed
    • …
    corecore