1,078 research outputs found

    Full-Duplex Cloud Radio Access Network: Stochastic Design and Analysis

    Get PDF
    Full-duplex (FD) has emerged as a disruptive communications paradigm for enhancing the achievable spectral efficiency (SE), thanks to the recent major breakthroughs in self-interference (SI) mitigation. The FD versus half-duplex (HD) SE gain, in cellular networks, is however largely limited by the mutual-interference (MI) between the downlink (DL) and the uplink (UL). A potential remedy for tackling the MI bottleneck is through cooperative communications. This paper provides a stochastic design and analysis of FD enabled cloud radio access network (C-RAN) under the Poisson point process (PPP)-based abstraction model of multi-antenna radio units (RUs) and user equipments (UEs). We consider different disjoint and user-centric approaches towards the formation of finite clusters in the C-RAN. Contrary to most existing studies, we explicitly take into consideration non-isotropic fading channel conditions and finite-capacity fronthaul links. Accordingly, upper-bound expressions for the C-RAN DL and UL SEs, involving the statistics of all intended and interfering signals, are derived. The performance of the FD C-RAN is investigated through the proposed theoretical framework and Monte-Carlo (MC) simulations. The results indicate that significant FD versus HD C-RAN SE gains can be achieved, particularly in the presence of sufficient-capacity fronthaul links and advanced interference cancellation capabilities

    Linear Precoding in Cooperative MIMO Cellular Networks with Limited Coordination Clusters

    Full text link
    In a cooperative multiple-antenna downlink cellular network, maximization of a concave function of user rates is considered. A new linear precoding technique called soft interference nulling (SIN) is proposed, which performs at least as well as zero-forcing (ZF) beamforming. All base stations share channel state information, but each user's message is only routed to those that participate in the user's coordination cluster. SIN precoding is particularly useful when clusters of limited sizes overlap in the network, in which case traditional techniques such as dirty paper coding or ZF do not directly apply. The SIN precoder is computed by solving a sequence of convex optimization problems. SIN under partial network coordination can outperform ZF under full network coordination at moderate SNRs. Under overlapping coordination clusters, SIN precoding achieves considerably higher throughput compared to myopic ZF, especially when the clusters are large.Comment: 13 pages, 5 figure

    Downlink SDMA with Limited Feedback in Interference-Limited Wireless Networks

    Full text link
    The tremendous capacity gains promised by space division multiple access (SDMA) depend critically on the accuracy of the transmit channel state information. In the broadcast channel, even without any network interference, it is known that such gains collapse due to interstream interference if the feedback is delayed or low rate. In this paper, we investigate SDMA in the presence of interference from many other simultaneously active transmitters distributed randomly over the network. In particular we consider zero-forcing beamforming in a decentralized (ad hoc) network where each receiver provides feedback to its respective transmitter. We derive closed-form expressions for the outage probability, network throughput, transmission capacity, and average achievable rate and go on to quantify the degradation in network performance due to residual self-interference as a function of key system parameters. One particular finding is that as in the classical broadcast channel, the per-user feedback rate must increase linearly with the number of transmit antennas and SINR (in dB) for the full multiplexing gains to be preserved with limited feedback. We derive the throughput-maximizing number of streams, establishing that single-stream transmission is optimal in most practically relevant settings. In short, SDMA does not appear to be a prudent design choice for interference-limited wireless networks.Comment: Submitted to IEEE Transactions on Wireless Communication
    corecore