149 research outputs found

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    Delay analysis for wireless applications using a multiservice multiqueue processor sharing model

    Get PDF
    The ongoing development of wireless networks supporting multimedia applications requires service providers to efficiently deliver complex Quality of Service (QoS) requirements. The wide range of new applications in these networks significantly increases the difficulty of network design and dimensioning to meet QoS requirements. Medium Access Control (MAC) protocols affect QoS achieved by wireless networks. Research on analysis and performance evaluation is important for the efficient protocol design. As wireless networks feature scarce resources that are simultaneously shared by all users, processor sharing (PS) models were proposed for modelling resource sharing mechanisms in such systems. In this thesis, multi-priority MAC protocols are proposed for handling the various service traffic types. Then, an investigation of multiservice multiqueue PS models is undertaken to analyse the delay for some recently proposed wireless applications. We start with an introduction to MAC protocols for wireless networks which are specified in IEEE standards and then review scheduling algorithms which were proposed to work with the underlying MAC protocols to cooperatively achieve QoS goals. An overview of the relevant literature is given on PS models for performance analysis and evaluation of scheduling algorithms. We propose a multiservice multiqueue PS model using a scheduling scheme in multimedia wireless networks with a comprehensive description of the analytical solution. Firstly, we describe the existing multiqueue processor sharing (MPS) model, which uses a fixed service quantum at each queue, and correct a subtle incongruity in previous solutions presented in the literature. Secondly, a new scheduling framework is proposed to extend the previous MPS model to a general case. This newly proposed analytical approach is based on the idea that the service quantum arranged by a MAC scheduling controller to service data units can be priority-based. We obtain a closed-form expression for the mean delay of each service class in this model. In summary, our new approach simplifies MAC protocols for multimedia applications into an analytical model that includes more complex and realistic traffic models without compromising details of the protocol and significantly reduces the number of MAC headers, thus the overall average delay will be decreased. In response to using the studied multiservice multiqueue PS models, we apply the MPS model to two wireless applications: Push to Talk (PTT) service over GPRS/GSM networks and the Worldwide Interoperability for Microwave Access (WiMAX) networks. We investigate the uplink delay of PTT over traditional GPRS/GSM networks and the uplink delay for WiMAX Subscriber Station scheduler under a priority-based fair scheduling. MAC structures capable of supporting dynamically varying traffic are studied for the networks, especially, with the consideration of implementation issues. The model provides useful insights into the dynamic performance behaviours of GPRS/GSM and WiMAX networks with respect to various system parameters and comprehensive traffic conditions. We then evaluate the model under some different practical traffic scenarios. Through modelling of the operation of wireless access systems, under a variety of multimedia traffic, our analytical approaches provide practical analysis guidelines for wireless network dimensioning

    Hybrid switching : converging packet and TDM flows in a single platform

    Get PDF
    Optical fibers have brought fast and reliable data transmission to today’s network. The immense fiber build-out over the last few years has generated a wide array of new access technologies, transport and network protocols, and next-generation services in the Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN). All these different technologies, protocols, and services were introduced to address particular telecommunication needs. To remain competitive in the market, the service providers must offer most of these services, while maintaining their own profitability. However, offering a large variety of equipment, protocols, and services posses a big challenge for service carriers because it requires a huge investment in different technology platforms, lots of training of staff, and the management of all these networks. In today’s network, service providers use SONET (Synchronous Optical NETwork) as a basic TDM (Time Division Multiplexing) transport network. SONET was primarily designed to carry voice traffic from telephone networks. However, with the explosion of traffic in the Internet, the same SONET based TDM network is optimized to support increasing demand for packet based Internet network services (data, voice, video, teleconference etc.) at access networks and LANs. Therefore the service providers need to support their Internet Protocol (IP) infrastructure as well as in the legacy telephony infrastructure. Supporting both TDM and packet services in the present condition needs multilayer operations which is complex, expensive, and difficult to manage. A hybrid switch is a novel architecture that combines packets (IP) and TDM switching in a unified access platform and provides seamless integration of access networks and LANs with MAN/WAN networks. The ability to fully integrate these two capabilities in a single chassis will allow service providers to deploy a more cost effective and flexible architecture that can support a variety of different services. This thesis develops a hybrid switch which is capable of offering bundled services for TDM switching and packet routing. This is done by dividing the switch’s bandwidth into VT1.5 (Virtual Tributary -1.5) channels and providing SONET based signaling for routing the data and controlling the switch’s resources. The switch is a TDM based architecture which allows each switch’s port to be independently configured for any mixture of packet and TDM traffic, including 100% packet and 100% TDM. This switch allows service providers to simplify their edge networks by consolidating the number of separate boxes needed to provide fast and reliable access. This switch also reduces the number of network management systems needed, and decreases the resources needed to install, provision and maintain the network because of its ability to “collapse” two network layers into one platform. The scope of this thesis includes system architecture, logic implementation, and verification testing, and performance evaluation of the hybrid switch. The architecture consists of ingress/egress ports, an arbiter and a crossbar. Data from ingress ports is carried to the egress ports via VT1.5 channels which are switched at the cross point of the crossbar. The crossbar setup and channel assignments at ingress port are done by the arbiter. The design was tested by simulation and the hardware cost was estimated. The performance results showed that the switch is non-blocking, provide differentiated service, and has an overall effective throughput of 80%. This result is a significant step towards the goal of building a switch that can support multiprotocol and provide different network capabilities into one platform. The long-term goal of this project is to develop a prototype of the hybrid switch with broadband capability

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    Contribution to resource management in cellular access networks with limited backhaul capacity

    Get PDF
    La interfaz radio de los sistemas de comunicaciones móviles es normalmente considerada como la única limitación de capacidad en la red de acceso radio. Sin embargo, a medida que se van desplegando nuevas y más eficientes interfaces radio, y de que el tráfico de datos y multimedia va en aumento, existe la creciente preocupación de que la infraestructura de transporte (backhaul) de la red celular pueda convertirse en el cuello de botella en algunos escenarios. En este contexto, la tesis se centra en el desarrollo de técnicas de gestión de recursos que consideran de manera conjunta la gestión de recursos en la interfaz radio y el backhaul. Esto conduce a un nuevo paradigma donde los recursos del backhaul se consideran no sólo en la etapa de dimensionamiento, sino que además son incluidos en la problemática de gestión de recursos. Sobre esta base, el primer objetivo de la tesis consiste en evaluar los requerimientos de capacidad en las redes de acceso radio que usan IP como tecnología de transporte, de acuerdo a las recientes tendencias de la arquitectura de red. En particular, se analiza el impacto que tiene una solución de transporte basada en IP sobre la capacidad de transporte necesaria para satisfacer los requisitos de calidad de servicio en la red de acceso. La evaluación se realiza en el contexto de la red de acceso radio de UMTS, donde se proporciona una caracterización detallada de la interfaz Iub. El análisis de requerimientos de capacidad se lleva a cabo para dos diferentes escenarios: canales dedicados y canales de alta velocidad. Posteriormente, con el objetivo de aprovechar totalmente los recursos disponibles en el acceso radio y el backhaul, esta tesis propone un marco de gestión conjunta de recursos donde la idea principal consiste en incorporar las métricas de la red de transporte dentro del problema de gestión de recursos. A fin de evaluar los beneficios del marco de gestión de recursos propuesto, esta tesis se centra en la evaluación del problema de asignación de base, como estrategia para distribuir el tráfico entre las estaciones base en función de los niveles de carga tanto en la interfaz radio como en el backhaul. Este problema se analiza inicialmente considerando una red de acceso radio genérica, mediante la definición de un modelo analítico basado en cadenas de Markov. Dicho modelo permite calcular la ganancia de capacidad que puede alcanzar la estrategia de asignación de base propuesta. Posteriormente, el análisis de la estrategia propuesta se extiende considerando tecnologías específicas de acceso radio. En particular, en el contexto de redes WCDMA se desarrolla un algoritmo de asignación de base basado en simulatedannealing cuyo objetivo es maximizar una función de utilidad que refleja el grado de satisfacción de las asignaciones respecto los recursos radio y transporte. Finalmente, esta tesis aborda el diseño y evaluación de un algoritmo de asignación de base para los futuros sistemas de banda ancha basados en OFDMA. En este caso, el problema de asignación de base se modela como un problema de optimización mediante el uso de un marco de funciones de utilidad y funciones de coste de recursos. El problema planteado, que considera que existen restricciones de recursos tanto en la interfaz radio como en el backhaul, es mapeado a un problema de optimización conocido como Multiple-Choice Multidimensional Knapsack Problem (MMKP). Posteriormente, se desarrolla un algoritmo de asignación de base heurístico, el cual es evaluado y comparado con esquemas de asignación basados exclusivamente en criterios radio. El algoritmo concebido se basa en el uso de los multiplicadores de Lagrange y está diseñado para aprovechar de manera simultánea el balanceo de carga en la intefaz radio y el backhaul.Postprint (published version

    4G and Beyond - Exploiting Heterogeneity in Mobile Networks

    Get PDF
    corecore