12,882 research outputs found

    A Fair and Efficient Packet Scheduling Scheme for IEEE 802.16 Broadband Wireless Access Systems

    Full text link
    This paper proposes a fair and efficient QoS scheduling scheme for IEEE 802.16 BWA systems that satisfies both throughput and delay guarantee to various real and non-real time applications. The proposed QoS scheduling scheme is compared with an existing QoS scheduling scheme proposed in literature in recent past. Simulation results show that the proposed scheduling scheme can provide a tight QoS guarantee in terms of delay, delay violation rate and throughput for all types of traffic as defined in the WiMAX standard, thereby maintaining the fairness and helps to eliminate starvation of lower priority class services. Bandwidth utilization of the system and fairness index of the resources are also encountered to validate the QoS provided by our proposed scheduling scheme

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Dynamic Bandwidth Allocation in Heterogeneous OFDMA-PONs Featuring Intelligent LTE-A Traffic Queuing

    Get PDF
    This work was supported by the ACCORDANCE project, through the 7th ICT Framework Programme. This is an Accepted Manuscript of an article accepted for publication in Journal of Lightwave Technology following peer review. © 2014 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A heterogeneous, optical/wireless dynamic bandwidth allocation framework is presented, exhibiting intelligent traffic queuing for practically controlling the quality-of-service (QoS) of mobile traffic, backhauled via orthogonal frequency division multiple access–PON (OFDMA-PON) networks. A converged data link layer is presented between long term evolution-advanced (LTE-A) and next-generation passive optical network (NGPON) topologies, extending beyond NGPON2. This is achieved by incorporating in a new protocol design, consistent mapping of LTE-A QCIs and OFDMA-PON queues. Novel inter-ONU algorithms have been developed, based on the distribution of weights to allocate subcarriers to both enhanced node B/optical network units (eNB/ONUs) and residential ONUs, sharing the same infrastructure. A weighted, intra-ONU scheduling mechanism is also introduced to control further the QoS across the network load. The inter and intra-ONU algorithms are both dynamic and adaptive, providing customized solutions to bandwidth allocation for different priority queues at different network traffic loads exhibiting practical fairness in bandwidth distribution. Therefore, middle and low priority packets are not unjustifiably deprived in favor of high priority packets at low network traffic loads. Still the protocol adaptability allows the high priority queues to automatically over perform when the traffic load has increased and the available bandwidth needs to be rationally redistributed. Computer simulations have confirmed that following the application of adaptive weights the fairness index of the new scheme (representing the achieved throughput for each queue), has improved across the traffic load to above 0.9. Packet delay reduction of more than 40ms has been recorded as a result for the low priority queues, while high priories still achieve sufficiently low packet delays in the range of 20 to 30msPeer reviewe

    Current optical technologies for wireless access

    Get PDF
    The objective of this paper is to describe recent activities and investigations on free-space optics (FSO) or optical wireless and the excellent results achieved within SatNEx an EU-framework 6th programme and IC 0802 a COST action. In a first part, the FSO technology is briefly discussed. In a second part, we mention some performance evaluation criterions for the FSO. In third part, we briefly discuss some optical signal propagation experiments through the atmosphere by mentioning network architectures for FSO and then discuss the recent investigations in airborne and satellite application experiments for FSO. In part four, we mention some recent investigation results on modelling the FSO channel under fog conditions and atmospheric turbulence. Additionally, some recent major performance improvement results obtained by employing hybrid systems and using some specific modulation and coding schemes are presented
    • …
    corecore