437 research outputs found

    Broadband PLC for Clustered Advanced Metering Infrastructure (AMI) Architecture

    Get PDF
    Advanced metering infrastructure (AMI) subsystems monitor and control energy distribution through exchange of information between smart meters and utility networks. A key challenge is how to select a cost-effective communication system without compromising the performance of the applications. Current communication technologies were developed for conventional data networks with different requirements. It is therefore necessary to investigate how much of existing communication technologies can be retrofitted into the new energy infrastructure to cost-effectively deliver acceptable level of service. This paper investigates broadband power line communications (BPLC) as a backhaul solution in AMI. By applying the disparate traffic characteristics of selected AMI applications, the network performance is evaluated. This study also examines the communication network response to changes in application configurations in terms of packet sizes. In each case, the network is stress-tested and performance is assessed against acceptable thresholds documented in the literature. Results show that, like every other communication technology, BPLC has certain limitations; however, with some modifications in the network topology, it indeed can fulfill most AMI traffic requirements for flexible and time-bounded applications. These opportunities, if tapped, can significantly improve fiscal and operational efficiencies in AMI services. Simulation results also reveal that BPLC as a backhaul can support flat and clustered AMI structures with cluster size ranging from 1 to 150 smart meters

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Planning of FiWi Networks to Support Communications Infrastructure of SG and SC

    Get PDF
    Nowadays, growth in demand for bandwidth, due to new and future applications being implemented, for services provided from smart grids (SG), smart cities (SC) and internet of things (IoT), it has drawn attention of scientific community, on issues related to planning, and optimization of communication infrastructure resources, in addition is necessary comply with requirements such as scalability, coverage, security, flexibility, availability, delay and security. Another important point is how to find and analyze possible solutions that seek to minimize the costs involved by capital expenditure (CAPEX) and operational expenditure (OPEX), but where it is possible to measure the uncertainty coming from stochastic projections, in order to obtain the maximum benefit expected to give access to users Who benefits from the services provided by SG, SC and IoT, on the other hand, we must look for communications architectures that generate optimum topologies to meet demanded requirements and at the same time save energy, possible alternatives highlight the use of hybrid networks of optical fiber links combined with wireless links (Fiber-Wireless, FiWi). This chapter seeks to provide planning alternatives to network segments linking universal data aggregation point (UDAP) with base stations (BS), this segment joins wide area network (WAN) with metropolitan area network (MAN)

    Distributed Communication Architecture for Smart Grid Applications

    Get PDF
    One big challenge in building a smart grid arises from the fast growing amount of data and limited communication resources. The traditional centralized communication architecture does not scale well with the explosive increase of data and has a high probability of encountering communication bottlenecks due to long communication paths. To address this challenging issue, this article presents a distributed communication architecture that implements smart grid communications in an efficient and cost-effective way. This distributed architecture consists of multiple distributed operation centers, each of which is connected to several data concentrators serving one local area and only sends summary or required integrated information to a central operation center. Using this distributed architecture, communication distance is much shortened, and thus data will be delivered more efficiently and reliably. In addition, such a distributed architecture can manage and analyze data locally, rather than backhauling all raw data to the central operation center, leading to reduced cost and burden on communication resources. Advanced metering infrastructure is chosen as an example to demonstrate benefits of this architecture on improving communication performance. The distributed communication architecture is also readily applicable to other smart grid applications, for example, demand response management systems

    A review of cognitive smart grid communication infrastructure system

    Get PDF
    Abstract: The reliance on obsolete communication infrastructure and outdated technologies, in order to meet increasing electricity demand, consists of major challenges confronting traditional power grids. Therefore, the concept of smart grids (SGs) has been adopted as an ideal solution. This concept entails the integration of advanced information and communication technologies (ICTs) into power grids, as well as allowing a two-way flow of communication. However, recent development in cognitive technologies internet of things (IoT) smart devices particularly in home area network (HAN) as well rapid growth in wireless applications have enabled the traffic of huge data volumes across SGs. Data gathered in SGs are distinguished by quality of service (QoS) requirements such as; latency, security, bandwidth, etc. In order to support the level of QoS requirements in SGs, stable and secure communication infrastructure is of great importance. Therefore an in-depth review of the stateof- the-art of existing and emerging communication architectures of SGs is conducted. Therefore, this work proposes communication architecture based on fifth-generation (5G) and cognitive radio networks (CRN)
    • …
    corecore