154 research outputs found

    Cooperative communication in wireless networks: algorithms, protocols and systems

    Get PDF
    Current wireless network solutions are based on a link abstraction where a single co-channel transmitter transmits in any time duration. This model severely limits the performance that can be obtained from the network. Being inherently an extension of a wired network model, this model is also incapable of handling the unique challenges that arise in a wireless medium. The prevailing theme of this research is to explore wireless link abstractions that incorporate the broadcast and space-time varying nature of the wireless channel. Recently, a new paradigm for wireless networks which uses the idea of 'cooperative transmissions' (CT) has garnered significant attention. Unlike current approaches where a single transmitter transmits at a time in any channel, with CT, multiple transmitters transmit concurrently after appropriately encoding their transmissions. While the physical layer mechanisms for CT have been well studied, the higher layer applicability of CT has been relatively unexplored. In this work, we show that when wireless links use CT, several network performance metrics such as aggregate throughput, security and spatial reuse can be improved significantly compared to the current state of the art. In this context, our first contribution is Aegis, a framework for securing wireless networks against eavesdropping which uses CT with intelligent scheduling and coding in Wireless Local Area networks. The second contribution is Symbiotic Coding, an approach to encode information such that successful reception is possible even upon collisions. The third contribution is Proteus, a routing protocol that improves aggregate throughput in multi-hop networks by leveraging CT to adapt the rate and range of links in a flow. Finally, we also explore the practical aspects of realizing CT using real systems.PhDCommittee Chair: Sivakumar, Raghupathy; Committee Member: Ammar, Mostafa; Committee Member: Ingram, Mary Ann; Committee Member: Jayant, Nikil; Committee Member: Riley, Georg

    TEMPORAL CONNECTIVITY AS A MEASURE OF ROBUSTNESS IN NONORTHOGONAL MULTIPLE ACCESS WIRELESS NETWORKS

    Get PDF
    Supplementary Material has been provided, but is not yet published.Nonorthogonal multiple access (NOMA) is recognized as an important technology to meet the performance requirements of fifth generation (5G) and beyond 5G (B5G) wireless networks. Through the technique of overloading, NOMA has the potential to support higher connection densities, increased spectral efficiency, and lower latency than orthogonal multiple access. The role of NOMA in 5G/B5G wireless networks necessitates a clear understanding of how overloading variability affects network robustness. This dissertation considers the relationship between variable overloading and network robustness through the lens of temporal network theory, where robustness is measured through the evolution of temporal connectivity between network devices (ND). We develop a NOMA temporal graph model and stochastic temporal component framework to characterize time-varying network connectivity as a function of NOMA overloading. The analysis is extended to derive stochastic expressions and probability mass functions for unidirectional connectivity, bidirectional connectivity, the inter-event time between unidirectional connectivity, and the minimum time required for bidirectional connectivity between all NDs. We test the accuracy of our analytical results through numerical simulations. Our results provide an overloading-based characterization of time-varying network robustness that is generalizable to any underlying NOMA implementation.National Security Agency, Fort George G. Meade, MD 20775Major, United States Marine CorpsApproved for public release. Distribution is unlimited

    Turbo-like Iterative Multi-user Receiver Design for 5G Non-orthogonal Multiple Access

    Full text link
    Non-orthogonal multiple access (NoMA) as an efficient way of radio resource sharing has been identified as a promising technology in 5G to help improving system capacity, user connectivity, and service latency in 5G communications. This paper provides a brief overview of the progress of NoMA transceiver study in 3GPP, with special focus on the design of turbo-like iterative multi-user (MU) receivers. There are various types of MU receivers depending on the combinations of MU detectors and interference cancellation (IC) schemes. Link-level simulations show that expectation propagation algorithm (EPA) with hybrid parallel interference cancellation (PIC) is a promising MU receiver, which can achieve fast convergence and similar performance as message passing algorithm (MPA) with much lower complexity.Comment: Accepted by IEEE 88th Vehicular Technology Conference (IEEE VTC-2018 Fall), 5 pages, 6 figure

    Investigation on Evolving Single-Carrier NOMA into Multi-Carrier NOMA in 5G

    Full text link
    © 2013 IEEE. Non-orthogonal multiple access (NOMA) is one promising technology, which provides high system capacity, low latency, and massive connectivity, to address several challenges in the fifth-generation wireless systems. In this paper, we first reveal that the NOMA techniques have evolved from single-carrier NOMA (SC-NOMA) into multi-carrier NOMA (MC-NOMA). Then, we comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NOMA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access (PDMA). Meanwhile, we consider that the research challenges of SCMA and PDMA might be addressed with the stimulation of the advanced and matured progress in SC-NOMA. Finally, yet importantly, we investigate the emerging applications, and point out the future research trends of the MC-NOMA techniques, which could be straightforwardly inspired by the various deployments of SC-NOMA

    Hybrid generalized non-orthogonal multiple access for the 5G wireless networks.

    Get PDF
    Master of Science in Computer Engineering. University of KwaZulu-Natal. Durban, 2018.The deployment of 5G networks will lead to an increase in capacity, spectral efficiency, low latency and massive connectivity for wireless networks. They will still face the challenges of resource and power optimization, increasing spectrum efficiency and energy optimization, among others. Furthermore, the standardized technologies to mitigate against the challenges need to be developed and are a challenge themselves. In the current predecessor LTE-A networks, orthogonal frequency multiple access (OFDMA) scheme is used as the baseline multiple access scheme. It allows users to be served orthogonally in either time or frequency to alleviate narrowband interference and impulse noise. Further spectrum limitations of orthogonal multiple access (OMA) schemes have resulted in the development of non-orthogonal multiple access (NOMA) schemes to enable 5G networks to achieve high spectral efficiency and high data rates. NOMA schemes unorthogonally co-multiplex different users on the same resource elements (RE) (i.e. time-frequency domain, OFDMA subcarrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter and successfully separating them at the receiver by applying multi-user detection (MUD) algorithms. The current developed NOMA schemes, refered to as generalized-NOMA (G-NOMA) technologies includes; Interleaver Division Multiple Access (IDMA, Sparse code multiple access (SCMA), Low-density spreading multiple access (LDSMA), Multi-user shared access (MUSA) scheme and the Pattern Division Multiple Access (PDMA). These protocols are currently still under refinement, their performance and applicability has not been thoroughly investigated. The first part of this work undertakes a thorough investigation and analysis of the performance of the existing G-NOMA schemes and their applicability. Generally, G-NOMA schemes perceives overloading by non-orthogonal spectrum resource allocation, which enables massive connectivity of users and devices, and offers improved system spectral efficiency. Like any other technologies, the G-NOMA schemes need to be improved to further harvest their benefits on 5G networks leading to the requirement of Hybrid G-NOMA (G-NOMA) schemes. The second part of this work develops a HG-NOMA scheme to alleviate the 5G challenges of resource allocation, inter and cross-tier interference management and energy efficiency. This work develops and investigates the performance of an Energy Efficient HG-NOMA resource allocation scheme for a two-tier heterogeneous network that alleviates the cross-tier interference and improves the system throughput via spectrum resource optimization. By considering the combinatorial problem of resource pattern assignment and power allocation, the HG-NOMA scheme will enable a new transmission policy that allows more than two macro-user equipment’s (MUEs) and femto-user equipment’s (FUEs) to be co-multiplexed on the same time-frequency RE increasing the spectral efficiency. The performance of the developed model is shown to be superior to the PD-NOMA and OFDMA schemes

    Algorithms for 5G physical layer

    Get PDF
    There is a great activity in the research community towards the investigations of the various aspects of 5G at different protocol layers and parts of the network. Among all, physical layer design plays a very important role to satisfy high demands in terms of data rates, latency, reliability and number of connected devices for 5G deployment. This thesis addresses he latest developments in the physical layer algorithms regarding the channel coding, signal detection, frame synchronization and multiple access technique in the light of 5G use cases. These developments are governed by the requirements of the different use case scenarios that are envisioned to be the driving force in 5G. All chapters from chapter 2 to 5 are developed around the need of physical layer algorithms dedicated to 5G use cases. In brief, this thesis focuses on design, analysis, simulation and he advancement of physical layer aspects such as 1. Reliability based decoding of short length Linear Block Codes (LBCs) with very good properties in terms of minimum hamming istance for very small latency requiring applications. In this context, we enlarge the grid of possible candidates by considering, in particular, short length LBCs (especially extended CH codes) with soft-decision decoding; 2. Efficient synchronization of preamble/postamble in a short bursty frame using modified Massey correlator; 3. Detection of Primary User activity using semiblind spectrum sensing algorithms and analysis of such algorithms under practical imperfections; 4. Design of optimal spreading matrix for a Low Density Spreading (LDS) technique in the context of non-orthogonal multiple access. In such spreading matrix, small number of elements in a spreading sequences are non zero allowing each user to spread its data over small number of chips (tones), thus simplifying the decoding procedure using Message Passing Algorithm (MPA)

    Implementation and Analysis of Spectral Subtraction and Signal Separation in Deterministic Wide-Band Anti-Jamming Scenarios

    Get PDF
    With the increasing volume of wireless traffic that military operations require, the likelihood of transmissions interfering with each other is steadily growing to the point that new techniques need to be employed. Furthermore, to combat remotely operated improvised explosive devices, many ground convoys transmit high-power broadband jamming signals, which block both hostile as well as friendly communications. These wide-band jamming fields pose a serious technical challenge to existing anti-jamming solutions that are currently employed by the Navy and Marine Corps. This thesis examines the feasibility of removing such deterministic jammers from the spectral environment, enabling friendly communications. Anti-jamming solutions in self-jamming environments are rarely considered in the literature, principally due to the non-traditional nature of such jamming techniques. As a result, a combination of approaches are examined which include: Antenna Subset Selection, Spectral Subtraction, and Source Separation. These are combined to reduce environmental interference for reliable transmissions. Specific operational conditions are considered and evaluated, primarily to define the limitations and utility of such a system. A final prototype was constructed using a collection of USRP software defined radios, providing solid conclusions of the overall system performance
    • …
    corecore