5,267 research outputs found

    Performance Analysis of NOMA-Based Land Mobile Satellite Networks

    Get PDF
    Non-orthogonal multiple access (NOMA) scheme, which has the ability to superpose information in the power domain and serve multiple users on the same time/frequency resource, is regarded as an effective solution to increase transmit rate and fairness. In this paper, we introduce the NOMA scheme in a downlink land mobile satellite (LMS) network and present a comprehensive performance analysis for the considered system. Specifically, we first obtain the power allocation coefficients by maximizing the sum rate while meeting the predefined target rates of each NOMA user. Then, we derive the theoretical expressions for the ergodic capacity and the energy efficiency of the considered system. Moreover, the outage probability (OP) and average symbol error rate performances of NOMA users are derived analytically. To gain further insights, we derive the asymptotic OP at the high signal-to-noise ratio regime to characterize the diversity orders and coding gains of NOMA users. Finally, simulation results are provided to validate the theoretical analysis as well as the superiority of employing the NOMA scheme in the LMS system, and show the impact of key parameters, such as fading configurations and user selection strategy on the performance of NOMA users

    On-board beam generation for multibeam satellite systems

    Get PDF
    This paper aims at designing an onboard beam generation process for a hybrid onboard on-ground multibeam satellite architecture. The proposed method offers a good tradeoff between total throughput and feeder link bandwidth requirements compared with pure on-ground systems. Full frequency reuse among beams is considered, and the beamforming at the satellite is designed for supporting interference mitigation techniques. In addition, in order to reduce the payload cost and complexity, this onboard beamforming is assumed to be constant and the same for forward and return link transmissions so that the same array-fed reflector can be used for forward and return links, leading to a substantial reduction of the payload mass. To meet all these requirements, a novel robust minimum mean square error optimization is conceived. The benefits of the considered scheme are evaluated with respect to the current approaches both analytically and numerically. Indeed, we show that with the DVB-RCS and DVB-S2 standards, our proposal allows increasing the total throughput within a range between 6% and 15% with respect to other onboard processing techniques in the return and forward link, respectively.Peer ReviewedPostprint (author's final draft
    corecore