59 research outputs found

    Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks

    Get PDF
    Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions. Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC). Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model. In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby. A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations

    Coordinated direct and relay transmission with NOMA and network coding in Nakagami-m fading channel

    Get PDF
    Although the use of coordinated direct and relay transmission (CDRT) in non-orthogonal multiple access (NOMA) can extend the coverage, its duplicated transmission reduces the spectrum efficiency (SE) of NOMA. To improve the SE, we propose a spectrum-efficient scheme for NOMA-based CDRT over Nakagami-m fading channels. In this scheme, the base station (BS) connects with a cell-center user (CCU) directly while communicating with a cell-edge user (CEU) via a relay and the CCU. Then, the relay and the CCU use network coding to process and retransmit the signals sent by the BS first and the CEU later. Finally, the BS and the relay simultaneously broadcast downlink signals. We derive the closed-form expressions for the average SE, the user fairness index and the energy efficiency (EE) as well as the asymptotic average SE using both perfect and imperfect successive interference cancellation (SIC). Simulations verify the correctness of our theoretical analysis and the superiority of the proposed scheme in SE and EE

    Highly Efficient Resource Allocation Techniques in 5G for NOMA-based Massive MIMO and Relaying Systems

    Get PDF
    The explosive proliferation of smart devices in the 5-th generation (5G) network expects 1,000-fold capacity enhancement, leading to the urgent need of highly resource-efficient technologies. Non-orthogonal multiple access (NOMA), a promising spectral efficient technology for 5G to serve multiple users concurrently, can be combined with massive multiple input multiple output (MIMO) and relaying technology, to achieve highly efficient communications. Hence, this thesis studies the design and resource allocation of NOMA-based massive MIMO and relaying systems. Due to hardware constraints and channel condition variation, the first topic of the thesis develops efficient antenna selection and user scheduling algorithms for sum rate maximization in two MIMO-NOMA scenarios. In the single-band scenario, the proposed algorithm improves antenna search efficiency by limiting the candidate antennas to those are beneficial to the relevant users. In the multi-band scenario, the proposed algorithm selects the antennas and users with the highest contribution total channel gain. Numerical results show that our proposed algorithms achieve similar performance to other algorithms with reduced complexity. The second part of the thesis proposes the relaying and power allocation scheme for the NOMA-assisted relaying system to serve multiple cell-edge users. The relay node decodes its own message from the source NOMA signal and transmits the remaining part of signal to cell-edge users. The power allocation scheme is developed by minimizing the system outage probability. To further evaluate the system performance, the ergodic capacity is approximated by analyzing the interference at cell-edge users. Numerical results proves the performance improvement of the proposed system over conventional orthogonal multiple access mechanism
    • …
    corecore