124 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Deploying Large-Scale Datasets on-Demand in the Cloud: Treats and Tricks on Data Distribution

    Get PDF
    Public clouds have democratised the access to analytics for virtually any institution in the world. Virtual Machines (VMs) can be provisioned on demand, and be used to crunch data after uploading into the VMs. While this task is trivial for a few tens of VMs, it becomes increasingly complex and time consuming when the scale grows to hundreds or thousands of VMs crunching tens or hundreds of TB. Moreover, the elapsed time comes at a price: the cost of provisioning VMs in the cloud and keeping them waiting to load the data. In this paper we present a big data provisioning service that incorporates hierarchical and peer-to-peer data distribution techniques to speed-up data loading into the VMs used for data processing. The system dynamically mutates the sources of the data for the VMs to speed-up data loading. We tested this solution with 1000 VMs and 100 TB of data, reducing time by at least 30 % over current state of the art techniques. This dynamic topology mechanism is tightly coupled with classic declarative machine configuration techniques (the system takes a single high-level declarative configuration file and configures both software and data loading). Together, these two techniques simplify the deployment of big data in the cloud for end users who may not be experts in infrastructure management. Index Terms—Large-scale data transfer, flash crowd, big data, BitTorrent, p2p overlay, provisioning, big data distribution I

    Approximation Algorithms for Energy Minimization in Cloud Service Allocation under Reliability Constraints

    Get PDF
    We consider allocation problems that arise in the context of service allocation in Clouds. More specifically, we assume on the one part that each computing resource is associated to a capacity constraint, that can be chosen using Dynamic Voltage and Frequency Scaling (DVFS) method, and to a probability of failure. On the other hand, we assume that the service runs as a set of independent instances of identical Virtual Machines. Moreover, there exists a Service Level Agreement (SLA) between the Cloud provider and the client that can be expressed as follows: the client comes with a minimal number of service instances which must be alive at the end of the day, and the Cloud provider offers a list of pairs (price,compensation), this compensation being paid by the Cloud provider if it fails to keep alive the required number of services. On the Cloud provider side, each pair corresponds actually to a guaranteed success probability of fulfilling the constraint on the minimal number of instances. In this context, given a minimal number of instances and a probability of success, the question for the Cloud provider is to find the number of necessary resources, their clock frequency and an allocation of the instances (possibly using replication) onto machines. This solution should satisfy all types of constraints during a given time period while minimizing the energy consumption of used resources. We consider two energy consumption models based on DVFS techniques, where the clock frequency of physical resources can be changed. For each allocation problem and each energy model, we prove deterministic approximation ratios on the consumed energy for algorithms that provide guaranteed probability failures, as well as an efficient heuristic, whose energy ratio is not guaranteed
    corecore