63,247 research outputs found

    Coexistence of Wi-Fi and Heterogeneous Small Cell Networks Sharing Unlicensed Spectrum

    Get PDF
    As two major players in terrestrial wireless communications, Wi-Fi systems and cellular networks have different origins and have largely evolved separately. Motivated by the exponentially increasing wireless data demand, cellular networks are evolving towards a heterogeneous and small cell network architecture, wherein small cells are expected to provide very high capacity. However, due to the limited licensed spectrum for cellular networks, any effort to achieve capacity growth through network densification will face the challenge of severe inter-cell interference. In view of this, recent standardization developments have started to consider the opportunities for cellular networks to use the unlicensed spectrum bands, including the 2.4 GHz and 5 GHz bands that are currently used by Wi-Fi, Zigbee and some other communication systems. In this article, we look into the coexistence of Wi-Fi and 4G cellular networks sharing the unlicensed spectrum. We introduce a network architecture where small cells use the same unlicensed spectrum that Wi-Fi systems operate in without affecting the performance of Wi-Fi systems. We present an almost blank subframe (ABS) scheme without priority to mitigate the co-channel interference from small cells to Wi-Fi systems, and propose an interference avoidance scheme based on small cells estimating the density of nearby Wi-Fi access points to facilitate their coexistence while sharing the same unlicensed spectrum. Simulation results show that the proposed network architecture and interference avoidance schemes can significantly increase the capacity of 4G heterogeneous cellular networks while maintaining the service quality of Wi-Fi systems

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Performance Analysis of Micro Unmanned Airborne Communication Relays for Cellular Networks

    Full text link
    This paper analyses the potential of utilising small unmanned-aerial-vehicles (SUAV) as wireless relays for assisting cellular network performance. Whilst high altitude wireless relays have been investigated over the past 2 decades, the new class of low cost SUAVs offers new possibilities for addressing local traffic imbalances and providing emergency coverage.We present field-test results from an SUAV test-bed in both urban and rural environments. The results show that trough-to-peak throughput improvements can be achieved for users in poor coverage zones. Furthermore, the paper reinforces the experimental study with large-scale network analysis using both stochastic geometry and multi-cell simulation results.Comment: conferenc
    • …
    corecore