8,969 research outputs found

    Scaling laws for molecular communication

    Full text link
    In this paper, we investigate information-theoretic scaling laws, independent from communication strategies, for point-to-point molecular communication, where it sends/receives information-encoded molecules between nanomachines. Since the Shannon capacity for this is still an open problem, we first derive an asymptotic order in a single coordinate, i.e., i) scaling time with constant number of molecules mm and ii) scaling molecules with constant time tt. For a single coordinate case, we show that the asymptotic scaling is logarithmic in either coordinate, i.e., Θ(logt)\Theta(\log t) and Θ(logm)\Theta(\log m), respectively. We also study asymptotic behavior of scaling in both time and molecules and show that, if molecules and time are proportional to each other, then the asymptotic scaling is linear, i.e., Θ(t)=Θ(m)\Theta(t)=\Theta(m).Comment: Accepted for publication in the 2014 IEEE International Symposium on Information Theor

    Bounds on the Capacity of ASK Molecular Communication Channels with ISI

    Get PDF
    There are now several works on the use of the additive inverse Gaussian noise (AIGN) model for the random transit time in molecular communication~(MC) channels. The randomness invariably causes inter-symbol interference (ISI) in MC, an issue largely ignored or simplified. In this paper we derive an upper bound and two lower bounds for MC based on amplitude shift keying (ASK) in presence of ISI. The Blahut-Arimoto algorithm~(BAA) is modified to find the input distribution of transmitted symbols to maximize the lower bounds. Our results show that over wide parameter values the bounds are close.Comment: 7 pages, 4 figures, Accepted in IEEE GLOBECOM 201

    Quantum Limitations on the Storage and Transmission of Information

    Full text link
    Information must take up space, must weigh, and its flux must be limited. Quantum limits on communication and information storage leading to these conclusions are here described. Quantum channel capacity theory is reviewed for both steady state and burst communication. An analytic approximation is given for the maximum signal information possible with occupation number signal states as a function of mean signal energy. A theorem guaranteeing that these states are optimal for communication is proved. A heuristic "proof" of the linear bound on communication is given, followed by rigorous proofs for signals with specified mean energy, and for signals with given energy budget. And systems of many parallel quantum channels are shown to obey the linear bound for a natural channel architecture. The time--energy uncertainty principle is reformulated in information language by means of the linear bound. The quantum bound on information storage capacity of quantum mechanical and quantum field devices is reviewed. A simplified version of the analytic proof for the bound is given for the latter case. Solitons as information caches are discussed, as is information storage in one dimensional systems. The influence of signal self--gravitation on communication is considerd. Finally, it is shown that acceleration of a receiver acts to block information transfer.Comment: Published relatively inaccessible review on a perennially interesting subject. Plain TeX, 47 pages, 5 jpg figures (not embedded
    corecore