1,641 research outputs found

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog

    Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels

    No full text
    Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity

    Performance of variable rate bit interleaved coding for high bandwidth efficiency

    Get PDF
    We propose a bandwidth efficient error correction scheme, namely the variable rate adaptive bit-interleaved coded modulation (ABICM), for wireless mobile channel. The code rate and modulation level are varied according to the current channel state to exploit the timevarying nature of the wireless channel. Design challenges to achieve symbol-by-symbol adaptation and component codes design are addressed. A multi-level puncturing scheme is proposed to solve the problem of symbol-by-symbol puncturing and interleaving. The optimal adaptation thresholds are derived. It is found that there are significant gains relative to the fixed rate coding in terms of SNR and throughput. It is also found that the ABICM scheme is essentially not degraded in small interleaving depths. This makes the ABICM very suitable for real time applications.published_or_final_versio

    Performance Analysis of Iteratively Decoded Variable-Length Space-Time Coded Modulation

    No full text
    It is demonstrated that iteratively Decoded Variable Length Space Time Coded Modulation (VL-STCM-ID) schemes are capable of simultaneously providing both coding gain as well as multiplexing and diversity gain. The VL-STCM-ID arrangement is a jointly designed iteratively decoded scheme combining source coding, channel coding, modulation as well as spatial diversity/multiplexing. In this contribution, we analyse the iterative decoding convergence of the VL-STCM-ID scheme using symbol-based three-dimensional EXIT charts. The performance of the VL-STCM-ID scheme is shown to be about 14.6 dB better than that of the Fixed Length STCM (FL-STCM) benchmarker at a source symbol error ratio of 10?4, when communicating over uncorrelated Rayleigh fading channels. The performance of the VL-STCM-ID scheme when communicating over correlated Rayleigh fading channels using imperfect channel state information is also studied

    The bit interleaved coded modulation module for DVB-NGH: enhanced features for mobile reception

    No full text
    International audienceThis paper describes the main features of the DVB-NGH Bit-Interleaved Coded Modulation (BICM) module. This latter is derived from a sub-set of DVB-T2 BICM components with additional features intended to first lower receiver complexity and power consumption and then to increase receiver robustness over mobile reception. Therefore, the long code block size was removed, a different range of coding rates was chosen, non-uniform constellations were adopted in order to provide shaping gain, and the principle of signal space diversity was extended to four-dimensional rotated constellations. Moreover the structure of the time interleaver offers the possibility to significantly increase the interleaving depth, a feature required for mobility over terrestrial and satellite links

    Low-Density Parity-Check Coded High-order Modulation Schemes

    Full text link
    In this thesis, we investigate how to support reliable data transmissions at high speeds in future communication systems, such as 5G/6G, WiFi, satellite, and optical communications. One of the most fundamental problems in these communication systems is how to reliably transmit information with a limited number of resources, such as power and spectral. To obtain high spectral efficiency, we use coded modulation (CM), such as bit-interleaved coded modulation (BICM) and delayed BICM (DBICM). To be specific, BICM is a pragmatic implementation of CM which has been largely adopted in both industry and academia. While BICM approaches CM capacity at high rates, the capacity gap between BICM and CM is still noticeable at lower code rates. To tackle this problem, DBICM, as a variation of BICM, introduces a delay module to create a dependency between multiple codewords, which enables us to exploit extrinsic information from the decoded delayed sub-blocks to improve the detection of the undelayed sub-blocks. Recent work shows that DBICM improves capacity over BICM. In addition, BICM and DBICM schemes protect each bit-channel differently, which is often referred to as the unequal error protection (UEP) property. Therefore, bit mapping designs are important for constructing pragmatic BICM and DBICM. To provide reliable communication, we have jointly designed bit mappings in DBICM and irregular low-density parity-check (LDPC) codes. For practical considerations, spatially coupled LDPC (SC-LDPC) codes have been considered as well. Specifically, we have investigated the joint design of the multi-chain SC-LDPC and the BICM bit mapper. In addition, the design of SC-LDPC codes with improved decoding threshold performance and reduced rate loss has been investigated in this thesis as well. The main body of this thesis consists of three parts. In the first part, considering Gray-labeled square M-ary quadrature amplitude modulation (QAM) constellations, we investigate the optimal delay scheme with the largest spectrum efficiency of DBICM for a fixed maximum number of delayed time slots and a given signal-to-noise ratio. Furthermore, we jointly optimize degree distributions and channel assignments of LDPC codes using protograph-based extrinsic information transfer charts. In addition, we proposed a constrained progressive edge growth-like algorithm to jointly construct LDPC codes and bit mappings for DBICM, taking the capacity of each bit-channel into account. Simulation results demonstrate that the designed LDPC-coded DBICM systems significantly outperform LDPC-coded BICM systems. In the second part, we proposed a windowed decoding algorithm for DBICM, which uses the extrinsic information of both the decoded delayed and undelayed sub-blocks, to improve the detection for all sub-blocks. We show that the proposed windowed decoding significantly outperforms the original decoding, demonstrating the effectiveness of the proposed decoding algorithm. In the third part, we apply multi-chain SC-LDPC to BICM. We investigate various connections for multi-chain SC-LDPC codes and bit mapping designs and analyze the performance of the multi-chain SC-LDPC codes over the equivalent binary erasure channels via density evolution. Numerical results demonstrate the superiority of the proposed design over existing connected-chain ensembles and over single-chain ensembles with the existing bit mapping design
    corecore