22,317 research outputs found

    A unit cost adjusting heuristic algorithm for the integrated planning and scheduling of a two-stage supply chain

    Get PDF
    Purpose: The stable relationship of one-supplier-one-customer is replaced by a dynamic relationship of multi-supplier-multi-customer in current market gradually, and efficient scheduling techniques are important tools of the dynamic supply chain relationship establishing process. This paper studies the optimization of the integrated planning and scheduling problem of a two-stage supply chain with multiple manufacturers and multiple retailers to obtain a minimum supply chain operating cost, whose manufacturers have different production capacities, holding and producing cost rates, transportation costs to retailers. Design/methodology/approach: As a complex task allocation and scheduling problem, this paper sets up an INLP model for it and designs a Unit Cost Adjusting (UCA) heuristic algorithm that adjust the suppliers’ supplying quantity according to their unit costs step by step to solve the model. Findings: Relying on the contrasting analysis between the UCA and the Lingo solvers for optimizing many numerical experiments, results show that the INLP model and the UCA algorithm can obtain its near optimal solution of the two-stage supply chain’s planning and scheduling problem within very short CPU time. Research limitations/implications: The proposed UCA heuristic can easily help managers to optimizing the two-stage supply chain scheduling problems which doesn’t include the delivery time and batch of orders. For two-stage supply chains are the most common form of actual commercial relationships, so to make some modification and study on the UCA heuristic should be able to optimize the integrated planning and scheduling problems of a supply chain with more reality constraints. Originality/value: This research proposes an innovative UCA heuristic for optimizing the integrated planning and scheduling problem of two-stage supply chains with the constraints of suppliers’ production capacity and the orders’ delivering time, and has a great practical significance to the dynamic relationship establishment of multi-supplier-multi-customer in current market.Peer Reviewe

    A unit cost adjusting heuristic algorithm for the integrated planning and scheduling of a two-stage supply chain

    Get PDF
    Purpose: The stable relationship of one-supplier-one-customer is replaced by a dynamic relationship of multi-supplier-multi-customer in current market gradually, and efficient scheduling techniques are important tools of the dynamic supply chain relationship establishing process. This paper studies the optimization of the integrated planning and scheduling problem of a two-stage supply chain with multiple manufacturers and multiple retailers to obtain a minimum supply chain operating cost, whose manufacturers have different production capacities, holding and producing cost rates, transportation costs to retailers. Design/methodology/approach: As a complex task allocation and scheduling problem, this paper sets up an INLP model for it and designs a Unit Cost Adjusting (UCA) heuristic algorithm that adjust the suppliers’ supplying quantity according to their unit costs step by step to solve the model. Findings: Relying on the contrasting analysis between the UCA and the Lingo solvers for optimizing many numerical experiments, results show that the INLP model and the UCA algorithm can obtain its near optimal solution of the two-stage supply chain’s planning and scheduling problem within very short CPU time. Research limitations/implications: The proposed UCA heuristic can easily help managers to optimizing the two-stage supply chain scheduling problems which doesn’t include the delivery time and batch of orders. For two-stage supply chains are the most common form of actual commercial relationships, so to make some modification and study on the UCA heuristic should be able to optimize the integrated planning and scheduling problems of a supply chain with more reality constraints. Originality/value: This research proposes an innovative UCA heuristic for optimizing the integrated planning and scheduling problem of two-stage supply chains with the constraints of suppliers’ production capacity and the orders’ delivering time, and has a great practical significance to the dynamic relationship establishment of multi-supplier-multi-customer in current market.Peer Reviewe

    Strategies for dynamic appointment making by container terminals

    Get PDF
    We consider a container terminal that has to make appointments with barges dynamically, in real-time, and partly automatic. The challenge for the terminal is to make appointments with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances, such as uncertain arrival and handling times, as well as cancellations and no-shows. We illustrate this problem using an innovative implementation project which is currently running in the Port of Rotterdam. This project aims to align barge rotations and terminal quay schedules by means of a multi-agent system. In this\ud paper, we take the perspective of a single terminal that will participate in this planning system, and focus on the decision making capabilities of its intelligent agent. We focus on the question how the terminal operator can optimize, on an operational level, the utilization of its quay resources, while making reliable appointments with barges, i.e., with a guaranteed departure time. We explore two approaches: (i) an analytical approach based on the value of having certain intervals within the schedule and (ii) an approach based on sources of exibility that are naturally available to the terminal. We use simulation to get insight in the benefits of these approaches. We conclude that a major increase in utilization degree could be achieved only by deploying the sources of exibility, without harming the waiting time of barges too much

    Models for supply chain negotiation in collaborative relationships

    Get PDF
    Nowadays, firms are increasingly building collaborative relationships with their partners in order to improve the global performance of the supply chain in which they are involved. Such collaborative relationships require information exchange or share and negotiation. In this paper, we first formalize some practices of collaboration from case studies of the aeronautical area then suggest some models for negotiation, allowing a supply chain member to publish hidden constraints and share risks/costs in order to achieve a win-win situation

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u

    Energy-Efficient Antenna Selection and Power Allocation for Large-Scale Multiple Antenna Systems with Hybrid Energy Supply

    Full text link
    The combination of energy harvesting and large-scale multiple antenna technologies provides a promising solution for improving the energy efficiency (EE) by exploiting renewable energy sources and reducing the transmission power per user and per antenna. However, the introduction of energy harvesting capabilities into large-scale multiple antenna systems poses many new challenges for energy-efficient system design due to the intermittent characteristics of renewable energy sources and limited battery capacity. Furthermore, the total manufacture cost and the sum power of a large number of radio frequency (RF) chains can not be ignored, and it would be impractical to use all the antennas for transmission. In this paper, we propose an energy-efficient antenna selection and power allocation algorithm to maximize the EE subject to the constraint of user's quality of service (QoS). An iterative offline optimization algorithm is proposed to solve the non-convex EE optimization problem by exploiting the properties of nonlinear fractional programming. The relationships among maximum EE, selected antenna number, battery capacity, and EE-SE tradeoff are analyzed and verified through computer simulations.Comment: IEEE Globecom 2014 Selected Areas in Communications Symposium-Green Communications and Computing Trac
    • 

    corecore