1,704 research outputs found

    Wearable Electromechanical Sensors and Its Applications

    Get PDF
    Wearable electromechanical sensor transforms mechanical stimulus into electrical signals. The main electromechanical sensors we focus on are strain and pressure sensors, which correspond to two main mechanical stimuli. According to their mechanisms, resistive and capacitive sensor attracts more attentions due to their simple structures, mechanisms, preparation method, and low cost. Various kinds of nanomaterials have been developed to fabricate them, including carbon nanomaterials, metallic, and conductive polymers. They have great potentials on health monitoring, human motion monitoring, speech recognition, and related human-machine interface applications. Here, we discuss their sensing mechanisms and fabrication methods and introduce recent progress on their performances and applications

    複数の静電容量型柔軟触覚デバイスを用いた三軸力センサの開発

    Get PDF
    早大学位記番号:新7325早稲田大

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described

    Dielectric Elastomer Sensors

    Get PDF
    Dielectric elastomers (DEs) represent a class of electroactive polymers (EAPs) that exhibit a significant electromechanical effect, which has made them very attractive over the last several decades for use as soft actuators, sensors and generators. Based on the principle of a plane‐parallel capacitor, dielectric elastomer sensors consist of a flexible and stretchable dielectric polymer sandwiched between two compliant electrodes. With the development of elastic polymers and stretchable conductors, flexible and sensitive dielectric elastomer tactile sensors, similar to human skin, have been used for measuring mechanical deformations, such as pressure, strain, shear and torsion. For high sensitivity and fast response, air gaps and microstructural dielectric layers are employed in pressure sensors or multiaxial force sensors. Multimodal dielectric elastomer sensors have been reported that can detect mechanical deformation but can also sense temperature, humidity, as well as chemical and biological stimulation in human‐activity monitoring and personal healthcare. Hence, dielectric elastomer sensors have great potential for applications in soft robotics, wearable devices, medical diagnostic and structural health monitoring, because of their large deformation, low cost, ease of fabrication and ease of integration into monitored structures

    Capacitive sensor to detect fallen humans in conditions of low visibility

    Full text link
    This paper examines the potential for a capacitive sensor to be used as part of a system to detect fallen humans at very close range. Previous research suggests that a robotic system incorporating a low cost capacitive sensor could potentially distinguish between different materials. The work reported in this paper stemmed from an attempt to determine the true extent to which such a system might reliably differentiate between fallen humans and other objects. The work is motivated by the fact that there are several different emergency circumstances in which such a system might save lives if it could reliably detect immobile humans. These scenarios include situations where older people have fallen and are unable to move or raise an alert, and circumstances where people have been overcome by smoke in a burning building. Current sensing systems are typically unsuitable in conditions of low visibility such as smoke filled rooms. This analysis focused specifically on the potential for a robot equipped with a capacitive sensing system to identify an immobile human in a low visibility emergency scenario. It is concluded that further work would be required to determine whether this type of capacitive sensing system is genuinely suitable for this task

    Advances in Assistive Electronic Device Solutions for Urology

    Get PDF
    Recent technology advances have led urology to become one of the leading specialities to utilise novel electronic systems to manage urological ailments. Contemporary bladder management strategies such as urinary catheters can provide a solution but leave the user mentally and physically debilitated. The unique properties of modern electronic devices, i.e., flexibility, stretchability, and biocompatibility, have allowed a plethora of new technologies to emerge. Many novel electronic device solutions in urology have been developed for treating impaired bladder disorders. These disorders include overactive bladder (OAB), underactive bladder (UAB) and other-urinary-affecting disorders (OUAD). This paper reviews common causes and conservative treatment strategies for OAB, UAB and OUAD, discussing the challenges and drawbacks of such treatments. Subsequently, this paper gives insight into clinically approved and research-based electronic advances in urology. Advances in this area cover bladder-stimulation and -monitoring devices, robot-assistive surgery, and bladder and sphincter prosthesis. This study aims to introduce the latest advances in electronic solutions for urology, comparing their advantages and disadvantages, and concluding with open problems for future urological device solutions

    Three Realizations and Comparison of Hardware for Piezoresistive Tactile Sensors

    Get PDF
    Tactile sensors are basically arrays of force sensors that are intended to emulate the skin in applications such as assistive robotics. Local electronics are usually implemented to reduce errors and interference caused by long wires. Realizations based on standard microcontrollers, Programmable Systems on Chip (PSoCs) and Field Programmable Gate Arrays (FPGAs) have been proposed by the authors for the case of piezoresistive tactile sensors. The solution employing FPGAs is especially relevant since their performance is closer to that of Application Specific Integrated Circuits (ASICs) than that of the other devices. This paper presents an implementation of such an idea for a specific sensor. For the purpose of comparison, the circuitry based on the other devices is also made for the same sensor. This paper discusses the implementation issues, provides details regarding the design of the hardware based on the three devices and compares them.This work has been partially funded by the Spanish Government under contracts TEC2006-12376 and TEC2009-14446

    A Large Area Tactile Sensor Patch Based on Commercial Force Sensors

    Get PDF
    This paper reports the design of a tactile sensor patch to cover large areas of robots and machines that interact with human beings. Many devices have been proposed to meet such a demand. These realizations are mostly custom-built or developed in the lab. The sensor of this paper is implemented with commercial force sensors. This has the benefit of a more foreseeable response of the sensor if its behavior is understood as the aggregation of readings from all the individual force sensors in the array. A few reported large area tactile sensors are also based on commercial sensors. However, the one in this paper is the first of this kind based on the use of polymeric commercial force sensing resistors (FSR) as unit elements of the array or tactels, which results in a robust sensor. The paper discusses design issues related to some necessary modifications of the force sensor, its assembly in an array, and the signal conditioning. The patch has 16 × 9 force sensors mounted on a flexible printed circuit board with a spatial resolution of 18.5 mm. The force range of a tactel is 6 N and its sensitivity is 0.6 V/N. The array is read at a rate of 78 frames per second. Finally, two simple application examples are also carried out with the sensor mounted on the forearm of a rescue robot that communicates with the sensor through a CAN bus
    corecore