469 research outputs found

    Capacitive User Tracking Methods for Smart Environments

    Get PDF

    Device-free indoor localisation with non-wireless sensing techniques : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronics and Computer Engineering, Massey University, Albany, New Zealand

    Get PDF
    Global Navigation Satellite Systems provide accurate and reliable outdoor positioning to support a large number of applications across many sectors. Unfortunately, such systems do not operate reliably inside buildings due to the signal degradation caused by the absence of a clear line of sight with the satellites. The past two decades have therefore seen intensive research into the development of Indoor Positioning System (IPS). While considerable progress has been made in the indoor localisation discipline, there is still no widely adopted solution. The proliferation of Internet of Things (IoT) devices within the modern built environment provides an opportunity to localise human subjects by utilising such ubiquitous networked devices. This thesis presents the development, implementation and evaluation of several passive indoor positioning systems using ambient Visible Light Positioning (VLP), capacitive-flooring, and thermopile sensors (low-resolution thermal cameras). These systems position the human subject in a device-free manner (i.e., the subject is not required to be instrumented). The developed systems improve upon the state-of-the-art solutions by offering superior position accuracy whilst also using more robust and generalised test setups. The developed passive VLP system is one of the first reported solutions making use of ambient light to position a moving human subject. The capacitive-floor based system improves upon the accuracy of existing flooring solutions as well as demonstrates the potential for automated fall detection. The system also requires very little calibration, i.e., variations of the environment or subject have very little impact upon it. The thermopile positioning system is also shown to be robust to changes in the environment and subjects. Improvements are made over the current literature by testing across multiple environments and subjects whilst using a robust ground truth system. Finally, advanced machine learning methods were implemented and benchmarked against a thermopile dataset which has been made available for other researchers to use

    Characterization of a Multi-User Indoor Positioning System Based on Low Cost Depth Vision (Kinect) for Monitoring Human Activity in a Smart Home

    Get PDF
    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains

    Technologies for Ambient Assisted Living: Ambient Communication and Indoor Positioning

    Get PDF
    In all industrialised countries, the population is aging rapidly as the average life expectancy continues to rise and the number of younger age groups grows smaller. Hence, due to economical and practical reasons, the elders of the near future will likely live longer in their own apartments, particularly because institutionalization is significantly expensive and there is not room for the entire elderly population in currently existing nursing homes. Even more important, nearly all people would choose to live independently as long as possible before moving into an assisted-living facility.A longer period of independent living for elders can be enabled by technical solutions. In this work, two technology areas for assisted living are studied. First, the prevention of feelings of loneliness in elders living alone is studied, and a solution for social inclusion and remote presence is presented. The results of long-lasting field trials are presented and analysed. Secondly, as information regarding the location of the inhabitant in the apartment can be used to provide several assistive services, indoor positioning systems are also studied in this work. Several technologies for indoor positioning are presented and compared. Furthermore, a new system based on capacitive measurement and the results of testing of the system are introduced.Technologies and systems developed here have been implemented into actual systems, and real end users have tested them over long periods of time. Thus, these technologies can be developed into commercial products with reasonable effort. Moreover, in this work it has been proven that the systems developed can actually be used to support the independent living of elders

    Detection of human movement by near field imaging : development of a novel method and applications

    Get PDF
    The proportion of senior citizens is increasing, which requires more resources in the care services. The effectiveness of these services is proposed to be increased by remote monitoring of senior citizens living at home or in nursing homes. The monitoring can be performed with various types of sensors, but the solution presented here incorporates most of the functionalities found in related work in one comprehensive system. The system that was developed uses electric field sensing to detect human presence and movement. Falls and the vital functions of a fallen person can also be extracted from the signals. The sensor arrangement consists of a matrix of thin planar electrodes under the floor surface, which makes the system completely undetectable and discreet. It is not disturbed by shading or darkness and does not require a lot of computing power. Computer vision does not enjoy these advantages. Furthermore, no devices need to be worn and no batteries need to be charged, as with systems based on transponders worn by the subject. If identification is required, the system developed in this work does not rule out the use of transponders. The impedances of the electrodes are measured using a tuned transformer and a phase-sensitive detector. A signal-to-noise ratio of 37 dB has been achieved with this structure. The mean positioning error when observing people who are walking is 21 cm. Multiple people can be discriminated with a 90% certainty if the distance between them is 78 cm. The sensitivity and specificity in fall detection have been found to be 91% and 91%, respectively. The cardiac activity and respiration are clearly visible when a person lies prone or supine on the floor. A capacitive radio frequency identification (RFID) tag in a shoe was developed for person identification. The system developed here has been installed in a large nursing home. The nurses have indicated their satisfaction in a comprehensive questionnaire, which was conducted by a representative of the nurses. Positive feedback has also been obtained from a senior person living alone and from his family members

    Towards Touch-to-Access Device Authentication Using Induced Body Electric Potentials

    Full text link
    This paper presents TouchAuth, a new touch-to-access device authentication approach using induced body electric potentials (iBEPs) caused by the indoor ambient electric field that is mainly emitted from the building's electrical cabling. The design of TouchAuth is based on the electrostatics of iBEP generation and a resulting property, i.e., the iBEPs at two close locations on the same human body are similar, whereas those from different human bodies are distinct. Extensive experiments verify the above property and show that TouchAuth achieves high-profile receiver operating characteristics in implementing the touch-to-access policy. Our experiments also show that a range of possible interfering sources including appliances' electromagnetic emanations and noise injections into the power network do not affect the performance of TouchAuth. A key advantage of TouchAuth is that the iBEP sensing requires a simple analog-to-digital converter only, which is widely available on microcontrollers. Compared with existing approaches including intra-body communication and physiological sensing, TouchAuth is a low-cost, lightweight, and convenient approach for authorized users to access the smart objects found in indoor environments.Comment: 16 pages, accepted to the 25th Annual International Conference on Mobile Computing and Networking (MobiCom 2019), October 21-25, 2019, Los Cabos, Mexic

    Application and validation of capacitive proximity sensing systems in smart environments

    Get PDF
    Smart environments feature a number of computing and sensing devices that support occupants in performing their tasks. In the last decades there has been a multitude of advances in miniaturizing sensors and computers, while greatly increasing their performance. As a result new devices are introduced into our daily lives that have a plethora of functions. Gathering information about the occupants is fundamental in adapting the smart environment according to preference and situation. There is a large number of different sensing devices available that can provide information about the user. They include cameras, accelerometers, GPS, acoustic systems, or capacitive sensors. The latter use the properties of an electric field to sense presence and properties of conductive objects within range. They are commonly employed in finger-controlled touch screens that are present in billions of devices. A less common variety is the capacitive proximity sensor. It can detect the presence of the human body over a distance, providing interesting applications in smart environments. Choosing the right sensor technology is an important decision in designing a smart environment application. Apart from looking at previous use cases, this process can be supported by providing more formal methods. In this work I present a benchmarking model that is designed to support this decision process for applications in smart environments. Previous benchmarks for pervasive systems have been adapted towards sensors systems and include metrics that are specific for smart environments. Based on distinct sensor characteristics, different ratings are used as weighting factors in calculating a benchmarking score. The method is verified using popularity matching in two scientific databases. Additionally, there are extensions to cope with central tendency bias and normalization with regards to average feature rating. Four relevant application areas are identified by applying this benchmark to applications in smart environments and capacitive proximity sensors. They are indoor localization, smart appliances, physiological sensing and gesture interaction. Any application area has a set of challenges regarding the required sensor technology, layout of the systems, and processing that can be tackled using various new or improved methods. I will present a collection of existing and novel methods that support processing data generated by capacitive proximity sensors. These are in the areas of sparsely distributed sensors, model-driven fitting methods, heterogeneous sensor systems, image-based processing and physiological signal processing. To evaluate the feasibility of these methods, several prototypes have been created and tested for performance and usability. Six of them are presented in detail. Based on these evaluations and the knowledge generated in the design process, I am able to classify capacitive proximity sensing in smart environments. This classification consists of a comparison to other popular sensing technologies in smart environments, the major benefits of capacitive proximity sensors, and their limitations. In order to support parties interested in developing smart environment applications using capacitive proximity sensors, I present a set of guidelines that support the decision process from technology selection to choice of processing methods
    • …
    corecore