610 research outputs found

    Capacitated Vehicle Routing with Non-Uniform Speeds

    Get PDF
    The capacitated vehicle routing problem (CVRP) involves distributing (identical) items from a depot to a set of demand locations, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm. The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k vehicles with possibly different speeds, the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated. The presence of non-uniform speeds introduces difficulties for employing standard tour-splitting techniques. In order to get a better understanding of this technique in our context, we appeal to ideas from the 2-approximation for scheduling in parallel machine of Lenstra et al.. This motivates the introduction of a new approximate MST construction called Level-Prim, which is related to Light Approximate Shortest-path Trees. The last component of our algorithm involves partitioning the Level-Prim tree and matching the resulting parts to vehicles. This decomposition is more subtle than usual since now we need to enforce correlation between the size of the parts and their distances to the depot

    Arc Routing with Time-Dependent Travel Times and Paths

    Full text link
    Vehicle routing algorithms usually reformulate the road network into a complete graph in which each arc represents the shortest path between two locations. Studies on time-dependent routing followed this model and therefore defined the speed functions on the complete graph. We argue that this model is often inadequate, in particular for arc routing problems involving services on edges of a road network. To fill this gap, we formally define the time-dependent capacitated arc routing problem (TDCARP), with travel and service speed functions given directly at the network level. Under these assumptions, the quickest path between locations can change over time, leading to a complex problem that challenges the capabilities of current solution methods. We introduce effective algorithms for preprocessing quickest paths in a closed form, efficient data structures for travel time queries during routing optimization, as well as heuristic and exact solution approaches for the TDCARP. Our heuristic uses the hybrid genetic search principle with tailored solution-decoding algorithms and lower bounds for filtering moves. Our branch-and-price algorithm exploits dedicated pricing routines, heuristic dominance rules and completion bounds to find optimal solutions for problem counting up to 75 services. Based on these algorithms, we measure the benefits of time-dependent routing optimization for different levels of travel-speed data accuracy

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A simheuristic algorithm for time-dependent waste collection management with stochastic travel times

    Get PDF
    A major operational task in city logistics is related to waste collection. Due to large problem sizes and numerous constraints, the optimization of real-life waste collection problems on a daily basis requires the use of metaheuristic solving frameworks to generate near-optimal collection routes in low computation times. This paper presents a simheuristic algorithm for the time-dependent waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds between different network nodes are accounted for. The algorithm is tested using real instances in a medium-sized city in Spain

    The stochastic vehicle routing problem : a literature review, part I : models

    Get PDF
    Building on the work of Gendreau et al. (Eur J Oper Res 88(1):3–12; 1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems. The numerous variants of the problem that have been studied in the literature are described and categorized. Keywords: vehicle routing (VRP), stochastic programming, SVRPpublishedVersio

    A matheuristic approach for the Pollution-Routing Problem

    Full text link
    This paper deals with the Pollution-Routing Problem (PRP), a Vehicle Routing Problem (VRP) with environmental considerations, recently introduced in the literature by [Bektas and Laporte (2011), Transport. Res. B-Meth. 45 (8), 1232-1250]. The objective is to minimize operational and environmental costs while respecting capacity constraints and service time windows. Costs are based on driver wages and fuel consumption, which depends on many factors, such as travel distance and vehicle load. The vehicle speeds are considered as decision variables. They complement routing decisions, impacting the total cost, the travel time between locations, and thus the set of feasible routes. We propose a method which combines a local search-based metaheuristic with an integer programming approach over a set covering formulation and a recursive speed-optimization algorithm. This hybridization enables to integrate more tightly route and speed decisions. Moreover, two other "green" VRP variants, the Fuel Consumption VRP (FCVRP) and the Energy Minimizing VRP (EMVRP), are addressed. The proposed method compares very favorably with previous algorithms from the literature and many new improved solutions are reported.Comment: Working Paper -- UFPB, 26 page

    A solution method for a two-layer sustainable supply chain distribution model

    Get PDF
    This article presents an effective solution method for a two-layer, NP-hard sustainable supply chain distribution model. A DoE-guided MOGA-II optimiser based solution method is proposed for locating a set of non-dominated solutions distributed along the Pareto frontier. The solution method allows decision-makers to prioritise the realistic solutions, while focusing on alternate transportation scenarios. The solution method has been implemented for the case of an Irish dairy processing industry׳s two-layer supply chain network. The DoE generates 6100 real feasible solutions after 100 generations of the MOGA-II optimiser which are then refined using statistical experimentation. As the decision-maker is presented with a choice of several distribution routes on the demand side of the two-layer network, TOPSIS is applied to rank the set of non-dominated solutions thus facilitating the selection of the best sustainable distribution route. The solution method characterises the Pareto solutions from disparate scenarios through numerical and statistical experimentations. A set of realistic routes from plants to consumers is derived and mapped which minimises total CO2 emissions and costs where it can be seen that the solution method outperforms existing solution methods

    An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network

    Get PDF
    This article evaluates the efficiency of three meta-heuristic optimiser (viz. MOGA-II, MOPSO and NSGA-II)-based solution methods for designing a sustainable three-echelon distribution network. The distribution network employs a bi-objective location-routing model. Due to the mathematically NP-hard nature of the model a multi-disciplinary optimisation commercial platform, modeFRONTIER®, is adopted to utilise the solution methods. The proposed Design of Experiment (DoE)-guided solution methods are of two phased that solve the NP-hard model to attain minimal total costs and total CO2 emission from transportation. Convergence of the optimisers are tested and compared. Ranking of the realistic results are examined using Pareto frontiers and the Technique for Order Preference by Similarity to Ideal Solution approach, followed by determination of the optimal transportation routes. A case of an Irish dairy processing industry’s three-echelon logistics network is considered to validate the solution methods. The results obtained through the proposed methods provide information on open/closed distribution centres (DCs), vehicle routing patterns connecting plants to DCs, open DCs to retailers and retailers to retailers, and number of trucks required in each route to transport the products. It is found that the DoE-guided NSGA-II optimiser based solution is more efficient when compared with the DoE-guided MOGA-II and MOPSO optimiser based solution methods in solving the bi-objective NP-hard three-echelon sustainable model. This efficient solution method enable managers to structure the physical distribution network on the demand side of a logistics network, minimising total cost and total CO2 emission from transportation while satisfying all operational constraints

    An Optimization Approach to the Ordering Phase of an Attended Home Delivery Service

    Full text link
    Attended Home Delivery (AHD) systems are used whenever a supplying company offers online shopping services that require that customers must be present when their deliveries arrive. Therefore, the supplying company and the customer must both agree on a time window, which ideally is rather short, during which delivery is guaranteed. Typically, a capacitated Vehicle Routing Problem with Time Windows forms the underlying optimization problem of the AHD system. In this work, we consider an AHD system that runs the online grocery shopping service of an international grocery retailer. The ordering phase, during which customers place their orders through the web service, is the computationally most challenging part of the AHD system. The delivery schedule must be built dynamically as new orders are placed. We propose a solution approach that allows to (non-stochastically) determine which delivery time windows can be offered to potential customers. We split the computations of the ordering phase into four key steps. For performing these basic steps we suggest both a heuristic approach and a hybrid approach employing mixed-integer linear programs. In an experimental evaluation we demonstrate the efficiency of our approaches
    corecore