1,964 research outputs found

    Approximation Algorithms for the Capacitated Domination Problem

    Full text link
    We consider the {\em Capacitated Domination} problem, which models a service-requirement assignment scenario and is also a generalization of the well-known {\em Dominating Set} problem. In this problem, given a graph with three parameters defined on each vertex, namely cost, capacity, and demand, we want to find an assignment of demands to vertices of least cost such that the demand of each vertex is satisfied subject to the capacity constraint of each vertex providing the service. In terms of polynomial time approximations, we present logarithmic approximation algorithms with respect to different demand assignment models for this problem on general graphs, which also establishes the corresponding approximation results to the well-known approximations of the traditional {\em Dominating Set} problem. Together with our previous work, this closes the problem of generally approximating the optimal solution. On the other hand, from the perspective of parameterization, we prove that this problem is {\it W[1]}-hard when parameterized by a structure of the graph called treewidth. Based on this hardness result, we present exact fixed-parameter tractable algorithms when parameterized by treewidth and maximum capacity of the vertices. This algorithm is further extended to obtain pseudo-polynomial time approximation schemes for planar graphs

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds

    Replica Placement on Bounded Treewidth Graphs

    Full text link
    We consider the replica placement problem: given a graph with clients and nodes, place replicas on a minimum set of nodes to serve all the clients; each client is associated with a request and maximum distance that it can travel to get served and there is a maximum limit (capacity) on the amount of request a replica can serve. The problem falls under the general framework of capacitated set covering. It admits an O(\log n)-approximation and it is NP-hard to approximate within a factor of o(logn)o(\log n). We study the problem in terms of the treewidth tt of the graph and present an O(t)-approximation algorithm.Comment: An abridged version of this paper is to appear in the proceedings of WADS'1
    corecore