372 research outputs found

    On Geometric Priority Set Cover Problems

    Get PDF
    We study the priority set cover problem for simple geometric set systems in the plane. For pseudo-halfspaces in the plane we obtain a PTAS via local search by showing that the corresponding set system admits a planar support. We show that the problem is APX-hard even for unit disks in the plane and argue that in this case the standard local search algorithm can output a solution that is arbitrarily bad compared to the optimal solution. We then present an LP-relative constant factor approximation algorithm (which also works in the weighted setting) for unit disks via quasi-uniform sampling. As a consequence we obtain a constant factor approximation for the capacitated set cover problem with unit disks. For arbitrary size disks, we show that the problem is at least as hard as the vertex cover problem in general graphs even when the disks have nearly equal sizes. We also present a few simple results for unit squares and orthants in the plane

    A Primal-Dual Based Power Control Approach for Capacitated Edge Servers

    Full text link
    The intensity of radio waves decays rapidly with increasing propagation distance, and an edge server's antenna needs more power to form a larger signal coverage area. Therefore, the power of the edge server should be controlled to reduce energy consumption. In addition, edge servers with capacitated resources provide services for only a limited number of users to ensure the quality of service (QoS). We set the signal transmission power for the antenna of each edge server and formed a signal disk, ensuring that all users were covered by the edge server signal and minimizing the total power of the system. This scenario is a typical geometric set covering problem, and even simple cases without capacity limits are NP-hard problems. In this paper, we propose a primal-dual-based algorithm and obtain an mm-approximation result. We compare our algorithm with two other algorithms through simulation experiments. The results show that our algorithm obtains a result close to the optimal value in polynomial time
    • …
    corecore