20,997 research outputs found

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Security aspects in cloud based condition monitoring of machine tools

    Get PDF
    In the modern competitive environments companies must have rapid production systems that are able to deliver parts that satisfy highest quality standards. Companies have also an increased need for advanced machines equipped with the latest technologies in maintenance to avoid any reduction or interruption of production. Eminent therefore is the need to monitor the health status of the manufacturing equipment in real time and thus try to develop diagnostic technologies for machine tools. This paper lays the foundation for the creation of a safe remote monitoring system for machine tools using a Cloud environment for communication between the customer and the maintenance service company. Cloud technology provides a convenient means for accessing maintenance data anywhere in the world accessible through simple devices such as PC, tablets or smartphones. In this context the safety aspects of a Cloud system for remote monitoring of machine tools becomes crucial and is, thus the focus of this pape

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    SecuCode: Intrinsic PUF Entangled Secure Wireless Code Dissemination for Computational RFID Devices

    Full text link
    The simplicity of deployment and perpetual operation of energy harvesting devices provides a compelling proposition for a new class of edge devices for the Internet of Things. In particular, Computational Radio Frequency Identification (CRFID) devices are an emerging class of battery-free, computational, sensing enhanced devices that harvest all of their energy for operation. Despite wireless connectivity and powering, secure wireless firmware updates remains an open challenge for CRFID devices due to: intermittent powering, limited computational capabilities, and the absence of a supervisory operating system. We present, for the first time, a secure wireless code dissemination (SecuCode) mechanism for CRFIDs by entangling a device intrinsic hardware security primitive Static Random Access Memory Physical Unclonable Function (SRAM PUF) to a firmware update protocol. The design of SecuCode: i) overcomes the resource-constrained and intermittently powered nature of the CRFID devices; ii) is fully compatible with existing communication protocols employed by CRFID devices in particular, ISO-18000-6C protocol; and ii) is built upon a standard and industry compliant firmware compilation and update method realized by extending a recent framework for firmware updates provided by Texas Instruments. We build an end-to-end SecuCode implementation and conduct extensive experiments to demonstrate standards compliance, evaluate performance and security.Comment: Accepted to the IEEE Transactions on Dependable and Secure Computin
    • …
    corecore