13 research outputs found

    Application and validation of capacitive proximity sensing systems in smart environments

    Get PDF
    Smart environments feature a number of computing and sensing devices that support occupants in performing their tasks. In the last decades there has been a multitude of advances in miniaturizing sensors and computers, while greatly increasing their performance. As a result new devices are introduced into our daily lives that have a plethora of functions. Gathering information about the occupants is fundamental in adapting the smart environment according to preference and situation. There is a large number of different sensing devices available that can provide information about the user. They include cameras, accelerometers, GPS, acoustic systems, or capacitive sensors. The latter use the properties of an electric field to sense presence and properties of conductive objects within range. They are commonly employed in finger-controlled touch screens that are present in billions of devices. A less common variety is the capacitive proximity sensor. It can detect the presence of the human body over a distance, providing interesting applications in smart environments. Choosing the right sensor technology is an important decision in designing a smart environment application. Apart from looking at previous use cases, this process can be supported by providing more formal methods. In this work I present a benchmarking model that is designed to support this decision process for applications in smart environments. Previous benchmarks for pervasive systems have been adapted towards sensors systems and include metrics that are specific for smart environments. Based on distinct sensor characteristics, different ratings are used as weighting factors in calculating a benchmarking score. The method is verified using popularity matching in two scientific databases. Additionally, there are extensions to cope with central tendency bias and normalization with regards to average feature rating. Four relevant application areas are identified by applying this benchmark to applications in smart environments and capacitive proximity sensors. They are indoor localization, smart appliances, physiological sensing and gesture interaction. Any application area has a set of challenges regarding the required sensor technology, layout of the systems, and processing that can be tackled using various new or improved methods. I will present a collection of existing and novel methods that support processing data generated by capacitive proximity sensors. These are in the areas of sparsely distributed sensors, model-driven fitting methods, heterogeneous sensor systems, image-based processing and physiological signal processing. To evaluate the feasibility of these methods, several prototypes have been created and tested for performance and usability. Six of them are presented in detail. Based on these evaluations and the knowledge generated in the design process, I am able to classify capacitive proximity sensing in smart environments. This classification consists of a comparison to other popular sensing technologies in smart environments, the major benefits of capacitive proximity sensors, and their limitations. In order to support parties interested in developing smart environment applications using capacitive proximity sensors, I present a set of guidelines that support the decision process from technology selection to choice of processing methods

    Device-free indoor localisation with non-wireless sensing techniques : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronics and Computer Engineering, Massey University, Albany, New Zealand

    Get PDF
    Global Navigation Satellite Systems provide accurate and reliable outdoor positioning to support a large number of applications across many sectors. Unfortunately, such systems do not operate reliably inside buildings due to the signal degradation caused by the absence of a clear line of sight with the satellites. The past two decades have therefore seen intensive research into the development of Indoor Positioning System (IPS). While considerable progress has been made in the indoor localisation discipline, there is still no widely adopted solution. The proliferation of Internet of Things (IoT) devices within the modern built environment provides an opportunity to localise human subjects by utilising such ubiquitous networked devices. This thesis presents the development, implementation and evaluation of several passive indoor positioning systems using ambient Visible Light Positioning (VLP), capacitive-flooring, and thermopile sensors (low-resolution thermal cameras). These systems position the human subject in a device-free manner (i.e., the subject is not required to be instrumented). The developed systems improve upon the state-of-the-art solutions by offering superior position accuracy whilst also using more robust and generalised test setups. The developed passive VLP system is one of the first reported solutions making use of ambient light to position a moving human subject. The capacitive-floor based system improves upon the accuracy of existing flooring solutions as well as demonstrates the potential for automated fall detection. The system also requires very little calibration, i.e., variations of the environment or subject have very little impact upon it. The thermopile positioning system is also shown to be robust to changes in the environment and subjects. Improvements are made over the current literature by testing across multiple environments and subjects whilst using a robust ground truth system. Finally, advanced machine learning methods were implemented and benchmarked against a thermopile dataset which has been made available for other researchers to use

    A Tagless Indoor Localization System Based on Capacitive Sensing Technology

    Get PDF
    Accurate indoor person localization is essential for several services, such as assisted living. We introduce a tagless indoor person localization system based on capacitive sensing and localization algorithms that can determine the location with less than 0.2 m average error in a 3 m × 3 m room and has recall and precision better than 70%. We also discuss the effects of various noise types on the measurements and ways to reduce them using filters suitable for on-sensor implementation to lower communication energy consumption. We also compare the performance of several standard localization algorithms in terms of localization error, recall, precision, and accuracy of detection of the movement trajectory

    Neural Networks for Indoor Human Activity Reconstructions

    Get PDF
    Low cost, ubiquitous, tagless, and privacy aware indoor monitoring is essential to many existing or future applications, such as assisted living of elderly persons. We explore how well different types of neural networks in basic configurations can extract location and movement information from noisy experimental data (with both high-pitch and slow drift noise) obtained from capacitive sensors operating in loading mode at ranges much longer that the diagonal of their plates. Through design space exploration, we optimize and analyze the location and trajectory tracking inference performance of multilayer perceptron (MLP), autoregressive feedforward, 1D Convolutional (1D-CNN), and Long-Short Term Memory (LSTM) neural networks on experimental data collected using four capacitive sensors with 16 cm x 16 cm plates deployed on the boundaries of a 3 m x 3 m open space in our laboratory. We obtain the minimum error using a 1D-CNN [0.251 m distance Root Mean Square Error (RMSE) and 0.307 m Average Distance Error (ADE)] and the smoothest trajectory inference using an LSTM, albeit with higher localization errors (0.281 m RMSE and 0.326 m ADE). 1D Convolutional and window-based neural networks have best inference accuracy and smoother trajectory reconstruction. LSTMs seem to infer best the person movement dynamics

    An Indoor Positioning System Based on Wearables for Ambient-Assisted Living

    Get PDF
    The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world’s population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an indoor positioning system for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness through the “Proyectos I + D Excelencia” programme (TIN2015-70202-P) and the “Redes de Excelencia” programme (TEC2015-71426-REDT), and from the Regional Government of Valencia (‘Proyectos de I + D para Grupos de Investigación Emergentes’ GV/2016/159). Special thanks to Víctor, Maricarmen, Inma and Daniel who lent their houses for performing the experiments

    In-home monitoring system based on WiFi fingerprints for ambient assisted living

    Get PDF
    This paper presents an in-home monitoring system based on WiFi fingerprints for Ambient Assisted Living. WiFi fingerprints are used to continuously locate a patient at the different rooms in her/his home. The experiments performed provide a correctly location rate of 96% in the best case of all studied scenarios. The behavior obtained by location monitoring allows to detect anomalous behavior such as long stays in rooms out of the common schedule. The main characteristics of the presented system are: a) it is robust enough to work without an own WiFi access point, which in turn means a very affordable solution; b) low obtrusiveness, as it is based on the use of a mobile phone; c) highly interoperable with other wireless connections (bluetooth, RFID) present in current mobile phones; d) alarms are triggered when any anomalous behavior is detected

    Localisation of humans, objects and robots interacting on load-sensing floors

    Get PDF
    International audienceLocalisation, tracking and recognition of objects and humans are basic tasks that are of high value in applications of ambient intelligence. Sensing floors were introduced to address these tasks in a non-intrusive way. To recognize the humans moving on the floor, they are usually first localized, and then a set of gait features are extracted (stride length, cadence, pressure profile over a footstep). However, recognition generally fails when several people stand or walk together, preventing successful tracking. This paper presents a detection, tracking and recognition technique which uses objects' weight. It continues working even when tracking individual persons becomes impossible. Inspired by computer vision, this technique processes the floor pressure-image by segmenting the blobs containing objects, tracking them, and recognizing their contents through a mix of inference and combinatorial search. The result lists the probabilities of assignments of known objects to observed blobs. The concept was successfully evaluated in daily life activity scenarii, involving multi-object tracking and recognition on low resolution sensors, crossing of user trajectories, and weight ambiguity. This technique can be used to provide a probabilistic input for multi-modal object tracking and recognition systems

    Finding Common Ground: A Survey of Capacitive Sensing in Human-Computer Interaction

    Get PDF
    For more than two decades, capacitive sensing has played a prominent role in human-computer interaction research. Capacitive sensing has become ubiquitous on mobile, wearable, and stationary devices---enabling fundamentally new interaction techniques on, above, and around them. The research community has also enabled human position estimation and whole-body gestural interaction in instrumented environments. However, the broad field of capacitive sensing research has become fragmented by different approaches and terminology used across the various domains. This paper strives to unify the field by advocating consistent terminology and proposing a new taxonomy to classify capacitive sensing approaches. Our extensive survey provides an analysis and review of past research and identifies challenges for future work. We aim to create a common understanding within the field of human-computer interaction, for researchers and practitioners alike, and to stimulate and facilitate future research in capacitive sensing

    ExerTrack - Towards Smart Surfaces to Track Exercises

    Get PDF
    The concept of the quantified self has gained popularity in recent years with the hype of miniaturized gadgets to monitor vital fitness levels. Smartwatches or smartphone apps and other fitness trackers are overwhelming the market. Most aerobic exercises such as walking, running, or cycling can be accurately recognized using wearable devices. However whole-body exercises such as push-ups, bridges, and sit-ups are performed on the ground and thus cannot be precisely recognized by wearing only one accelerometer. Thus, a floor-based approach is preferred for recognizing whole-body activities. Computer vision techniques on image data also report high recognition accuracy; however, the presence of a camera tends to raise privacy issues in public areas. Therefore, we focus on combining the advantages of ubiquitous proximity-sensing with non-optical sensors to preserve privacy in public areas and maintain low computation cost with a sparse sensor implementation. Our solution is the ExerTrack, an off-the-shelf sports mat equipped with eight sparsely distributed capacitive proximity sensors to recognize eight whole-body fitness exercises with a user-independent recognition accuracy of 93.5 % and a user-dependent recognition accuracy of 95.1 % based on a test study with 9 participants each performing 2 full sessions. We adopt a template-based approach to count repetitions and reach a user-independent counting accuracy of 93.6 %. The final model can run on a Raspberry Pi 3 in real time. This work includes data-processing of our proposed system and model selection to improve the recognition accuracy and data augmentation technique to regularize the network

    Capacitive Sensing and Communication for Ubiquitous Interaction and Environmental Perception

    Get PDF
    During the last decade, the functionalities of electronic devices within a living environment constantly increased. Besides the personal computer, now tablet PCs, smart household appliances, and smartwatches enriched the technology landscape. The trend towards an ever-growing number of computing systems has resulted in many highly heterogeneous human-machine interfaces. Users are forced to adapt to technology instead of having the technology adapt to them. Gathering context information about the user is a key factor for improving the interaction experience. Emerging wearable devices show the benefits of sophisticated sensors which make interaction more efficient, natural, and enjoyable. However, many technologies still lack of these desirable properties, motivating me to work towards new ways of sensing a user's actions and thus enriching the context. In my dissertation I follow a human-centric approach which ranges from sensing hand movements to recognizing whole-body interactions with objects. This goal can be approached with a vast variety of novel and existing sensing approaches. I focused on perceiving the environment with quasi-electrostatic fields by making use of capacitive coupling between devices and objects. Following this approach, it is possible to implement interfaces that are able to recognize gestures, body movements and manipulations of the environment at typical distances up to 50cm. These sensors usually have a limited resolution and can be sensitive to other conductive objects or electrical devices that affect electric fields. The technique allows for designing very energy-efficient and high-speed sensors that can be deployed unobtrusively underneath any kind of non-conductive surface. Compared to other sensing techniques, exploiting capacitive coupling also has a low impact on a user's perceived privacy. In this work, I also aim at enhancing the interaction experience with new perceptional capabilities based on capacitive coupling. I follow a bottom-up methodology and begin by presenting two low-level approaches for environmental perception. In order to perceive a user in detail, I present a rapid prototyping toolkit for capacitive proximity sensing. The prototyping toolkit shows significant advancements in terms of temporal and spatial resolution. Due to some limitations, namely the inability to determine the identity and fine-grained manipulations of objects, I contribute a generic method for communications based on capacitive coupling. The method allows for designing highly interactive systems that can exchange information through air and the human body. I furthermore show how human body parts can be recognized from capacitive proximity sensors. The method is able to extract multiple object parameters and track body parts in real-time. I conclude my thesis with contributions in the domain of context-aware devices and explicit gesture-recognition systems
    corecore