303 research outputs found

    Guarded Cubical Type Theory: Path Equality for Guarded Recursion

    Get PDF
    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\"of type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf category.Comment: 17 pages, to be published in proceedings of CSL 201

    Consistency and Completeness of Rewriting in the Calculus of Constructions

    Full text link
    Adding rewriting to a proof assistant based on the Curry-Howard isomorphism, such as Coq, may greatly improve usability of the tool. Unfortunately adding an arbitrary set of rewrite rules may render the underlying formal system undecidable and inconsistent. While ways to ensure termination and confluence, and hence decidability of type-checking, have already been studied to some extent, logical consistency has got little attention so far. In this paper we show that consistency is a consequence of canonicity, which in turn follows from the assumption that all functions defined by rewrite rules are complete. We provide a sound and terminating, but necessarily incomplete algorithm to verify this property. The algorithm accepts all definitions that follow dependent pattern matching schemes presented by Coquand and studied by McBride in his PhD thesis. It also accepts many definitions by rewriting, containing rules which depart from standard pattern matching.Comment: 20 page

    Search for Program Structure

    Get PDF
    The community of programming language research loves the Curry-Howard correspondence between proofs and programs. Cut-elimination as computation, theorems for free, \u27call/cc\u27 as excluded middle, dependently typed languages as proof assistants, etc. Yet we have, for all these years, missed an obvious observation: "the structure of programs corresponds to the structure of proof search". For pure programs and intuitionistic logic, more is known about the latter than the former. We think we know what programs are, but logicians know better! To motivate the study of proof search for program structure, we retrace recent research on applying focusing to study the canonical structure of simply-typed lambda-terms. We then motivate the open problem of extending canonical forms to support richer type systems, such as polymorphism, by discussing a few enticing applications of more canonical program representations

    Cubical Syntax for Reflection-Free Extensional Equality

    Get PDF
    We contribute XTT, a cubical reconstruction of Observational Type Theory which extends Martin-L\"of's intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity types principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel cubical extension (independently proposed by Awodey) of the logical families or categorical gluing argument inspired by Coquand and Shulman: every closed element of boolean type is derivably equal to either 'true' or 'false'.Comment: Extended version; International Conference on Formal Structures for Computation and Deduction (FSCD), 201
    • …
    corecore