7,375 research outputs found

    Canonical extensions of locally compact frames

    Full text link
    Canonical extension of finitary ordered structures such as lattices, posets, proximity lattices, etc., is a certain completion which entirely describes the topological dual of the ordered structure and it does so in a purely algebraic and choice-free way. We adapt the general algebraic technique that constructs them to the theory of frames. As a result, we show that every locally compact frame embeds into a completely distributive lattice by a construction which generalises, among others, the canonical extensions for distributive lattices and proximity lattices. This construction also provides a new description of a construction by Marcel Ern\'e. Moreover, canonical extensions of frames enable us to frame-theoretically represent monotone maps with respect to the specialisation order

    Duality and canonical extensions for stably compact spaces

    Get PDF
    We construct a canonical extension for strong proximity lattices in order to give an algebraic, point-free description of a finitary duality for stably compact spaces. In this setting not only morphisms, but also objects may have distinct pi- and sigma-extensions.Comment: 29 pages, 1 figur

    Representations of the Canonical group, (the semi-direct product of the Unitary and Weyl-Heisenberg groups), acting as a dynamical group on noncommuting extended phase space

    Full text link
    The unitary irreducible representations of the covering group of the Poincare group P define the framework for much of particle physics on the physical Minkowski space P/L, where L is the Lorentz group. While extraordinarily successful, it does not provide a large enough group of symmetries to encompass observed particles with a SU(3) classification. Born proposed the reciprocity principle that states physics must be invariant under the reciprocity transform that is heuristically {t,e,q,p}->{t,e,p,-q} where {t,e,q,p} are the time, energy, position, and momentum degrees of freedom. This implies that there is reciprocally conjugate relativity principle such that the rates of change of momentum must be bounded by b, where b is a universal constant. The appropriate group of dynamical symmetries that embodies this is the Canonical group C(1,3) = U(1,3) *s H(1,3) and in this theory the non-commuting space Q= C(1,3)/ SU(1,3) is the physical quantum space endowed with a metric that is the second Casimir invariant of the Canonical group, T^2 + E^2 - Q^2/c^2-P^2/b^2 +(2h I/bc)(Y/bc -2) where {T,E,Q,P,I,Y} are the generators of the algebra of Os(1,3). The idea is to study the representations of the Canonical dynamical group using Mackey's theory to determine whether the representations can encompass the spectrum of particle states. The unitary irreducible representations of the Canonical group contain a direct product term that is a representation of U(1,3) that Kalman has studied as a dynamical group for hadrons. The U(1,3) representations contain discrete series that may be decomposed into infinite ladders where the rungs are representations of U(3) (finite dimensional) or C(2) (with degenerate U(1)* SU(2) finite dimensional representations) corresponding to the rest or null frames.Comment: 25 pages; V2.3, PDF (Mathematica 4.1 source removed due to technical problems); Submitted to J.Phys.

    Canonical extensions and ultraproducts of polarities

    Full text link
    J{\'o}nsson and Tarski's notion of the perfect extension of a Boolean algebra with operators has evolved into an extensive theory of canonical extensions of lattice-based algebras. After reviewing this evolution we make two contributions. First it is shown that the failure of a variety of algebras to be closed under canonical extensions is witnessed by a particular one of its free algebras. The size of the set of generators of this algebra can be made a function of a collection of varieties and is a kind of Hanf number for canonical closure. Secondly we study the complete lattice of stable subsets of a polarity structure, and show that if a class of polarities is closed under ultraproducts, then its stable set lattices generate a variety that is closed under canonical extensions. This generalises an earlier result of the author about generation of canonically closed varieties of Boolean algebras with operators, which was in turn an abstraction of the result that a first-order definable class of Kripke frames determines a modal logic that is valid in its so-called canonical frames

    Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA

    Full text link
    Modal formulae express monadic second-order properties on Kripke frames, but in many important cases these have first-order equivalents. Computing such equivalents is important for both logical and computational reasons. On the other hand, canonicity of modal formulae is important, too, because it implies frame-completeness of logics axiomatized with canonical formulae. Computing a first-order equivalent of a modal formula amounts to elimination of second-order quantifiers. Two algorithms have been developed for second-order quantifier elimination: SCAN, based on constraint resolution, and DLS, based on a logical equivalence established by Ackermann. In this paper we introduce a new algorithm, SQEMA, for computing first-order equivalents (using a modal version of Ackermann's lemma) and, moreover, for proving canonicity of modal formulae. Unlike SCAN and DLS, it works directly on modal formulae, thus avoiding Skolemization and the subsequent problem of unskolemization. We present the core algorithm and illustrate it with some examples. We then prove its correctness and the canonicity of all formulae on which the algorithm succeeds. We show that it succeeds not only on all Sahlqvist formulae, but also on the larger class of inductive formulae, introduced in our earlier papers. Thus, we develop a purely algorithmic approach to proving canonical completeness in modal logic and, in particular, establish one of the most general completeness results in modal logic so far.Comment: 26 pages, no figures, to appear in the Logical Methods in Computer Scienc

    Coherence in Modal Logic

    Get PDF
    A variety is said to be coherent if the finitely generated subalgebras of its finitely presented members are also finitely presented. In a recent paper by the authors it was shown that coherence forms a key ingredient of the uniform deductive interpolation property for equational consequence in a variety, and a general criterion was given for the failure of coherence (and hence uniform deductive interpolation) in varieties of algebras with a term-definable semilattice reduct. In this paper, a more general criterion is obtained and used to prove the failure of coherence and uniform deductive interpolation for a broad family of modal logics, including K, KT, K4, and S4
    corecore