202 research outputs found

    Canonical extensions and ultraproducts of polarities

    Full text link
    J{\'o}nsson and Tarski's notion of the perfect extension of a Boolean algebra with operators has evolved into an extensive theory of canonical extensions of lattice-based algebras. After reviewing this evolution we make two contributions. First it is shown that the failure of a variety of algebras to be closed under canonical extensions is witnessed by a particular one of its free algebras. The size of the set of generators of this algebra can be made a function of a collection of varieties and is a kind of Hanf number for canonical closure. Secondly we study the complete lattice of stable subsets of a polarity structure, and show that if a class of polarities is closed under ultraproducts, then its stable set lattices generate a variety that is closed under canonical extensions. This generalises an earlier result of the author about generation of canonically closed varieties of Boolean algebras with operators, which was in turn an abstraction of the result that a first-order definable class of Kripke frames determines a modal logic that is valid in its so-called canonical frames

    Topological Representation of Canonicity for Varieties of Modal Algebras

    Get PDF
    Thesis (Ph.D.) - Indiana University, Mathematics, 2010The main subject of this dissertation is to approach the question of countable canonicity of varieties of modal algebras from a topological and categorical point of view. The category of coalgebras of the Vietoris functor on the category of Stone spaces provides a class of frames we call sv-frames. We show that the semantic of this frames is equivalent to that of modal algebras so long as we are limited to certain valuations called sv-valuations. We show that the canonical frame of any normal modal logic which is directly constructed based on the logic is an sv-frame. We then define the notion of canonicity of a logic in terms of varieties and their dual classes. We will then prove that any morphism on the category of coalgebras of the Vietoris functor whose codomain is the canonical frame of the minimal normal modal logic are exactly the ones that are invoked by sv-valuations. We will then proceed to reformulate canonicity of a variety of modal algebras determined by a logic in terms of properties of the class of sv-frames that correspond to that logic. We define ultrafilter extension as an operator on the category of sv-frames, prove a coproduct preservation result followed by some equivalent forms of canonicity. Using Stone duality the notion of co-variety of sv-frames is defined. The notion of validity of a logic on a frame is presented in terms of ranges of theory maps whose domain is the given frame. Partial equivalent results on co-varieties of sv-frames are proved. We classify theory maps which are maps invoked by a valuation on a Kripke frame using the classification of sv-theory maps and properties of ultrafilter extension. A negative categorical result concerning the existence of an adjoint functor for ultrafilter extension is also proved

    A system of relational syllogistic incorporating full Boolean reasoning

    Full text link
    We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: Some A are R-related to some B; Some A are R-related to all B; All A are R-related to some B; All A are R-related to all B. Such primitives formalize sentences from natural language like `All students read some textbooks'. Here A and B denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.Comment: Available at http://link.springer.com/article/10.1007/s10849-012-9165-
    corecore