9,784 research outputs found

    Jordan-Schwinger Representations and Factorised Yang-Baxter Operators

    Full text link
    The construction elements of the factorised form of the Yang-Baxter R operator acting on generic representations of q-deformed sl(n+1) are studied. We rely on the iterative construction of such representations by the restricted class of Jordan-Schwinger representations. The latter are formulated explicitly. On this basis the parameter exchange and intertwining operators are derived.Comment: based on a contribution to ISQS200

    The Ruijsenaars-Schneider Model in the Context of Seiberg-Witten Theory

    Get PDF
    The compactification of five dimensional N=2 SUSY Yang-Mills (YM) theory onto a circle provides a four dimensional YM model with N=4 SUSY. This supersymmetry can be broken down to N=2 if non-trivial boundary conditions in the compact dimension, \phi(x_5 +R) = e^{2\pi i\epsilon}\phi(x_5), are imposed on half of the fields. This two-parameter (R,\epsilon) family of compactifications includes as particular limits most of the previously studied four dimensional N=2 SUSY YM models with supermultiplets in the adjoint representation of the gauge group. The finite-dimensional integrable system associated to these theories via the Seiberg-Witten construction is the generic elliptic Ruijsenaars-Schneider model. In particular the perturbative (weak coupling) limit is described by the trigonometric Ruijsenaars-Schneider model.Comment: 18 pages, LaTe

    All orders structure and efficient computation of linearly reducible elliptic Feynman integrals

    Full text link
    We define linearly reducible elliptic Feynman integrals, and we show that they can be algorithmically solved up to arbitrary order of the dimensional regulator in terms of a 1-dimensional integral over a polylogarithmic integrand, which we call the inner polylogarithmic part (IPP). The solution is obtained by direct integration of the Feynman parametric representation. When the IPP depends on one elliptic curve (and no other algebraic functions), this class of Feynman integrals can be algorithmically solved in terms of elliptic multiple polylogarithms (eMPLs) by using integration by parts identities. We then elaborate on the differential equations method. Specifically, we show that the IPP can be mapped to a generalized integral topology satisfying a set of differential equations in ϵ\epsilon-form. In the examples we consider the canonical differential equations can be directly solved in terms of eMPLs up to arbitrary order of the dimensional regulator. The remaining 1-dimensional integral may be performed to express such integrals completely in terms of eMPLs. We apply these methods to solve two- and three-points integrals in terms of eMPLs. We analytically continue these integrals to the physical region by using their 1-dimensional integral representation.Comment: The differential equations method is applied to linearly reducible elliptic Feynman integrals, the solutions are in terms of elliptic polylogarithms, JHEP version, 50 page
    corecore