3,653 research outputs found

    Cannabinoid-mediated short-term plasticity in hippocampus

    Get PDF
    Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity

    Calcium-independent inhibitory G-protein signaling induces persistent presynaptic muting of hippocampal synapses

    Get PDF
    Adaptive forms of synaptic plasticity that reduce excitatory synaptic transmission in response to prolonged increases in neuronal activity may prevent runaway positive feedback in neuronal circuits. In hippocampal neurons, for example, glutamatergic presynaptic terminals are selectively silenced, creating mute synapses, after periods of increased neuronal activity or sustained depolarization. Previous work suggests that cAMP-dependent and proteasome-dependent mechanisms participate in silencing induction by depolarization, but upstream activators are unknown. We, therefore, tested the role of calcium and G-protein signaling in silencing induction in cultured hippocampal neurons. We found that silencing induction by depolarization was not dependent on rises in intracellular calcium, from either extracellular or intracellular sources. Silencing was, however, pertussis toxin sensitive, which suggests that inhibitory G-proteins are recruited. Surprisingly, blocking four common inhibitory G-protein-coupled receptors (GPCRs) (adenosine A(1) receptors, GABA(B) receptors, metabotropic glutamate receptors, and CB(1) cannabinoid receptors) and one ionotropic receptor with metabotropic properties (kainate receptors) failed to prevent depolarization-induced silencing. Activating a subset of these GPCRs (A(1) and GABA(B)) with agonist application induced silencing, however, which supports the hypothesis that G-protein activation is a critical step in silencing. Overall, our results suggest that depolarization activates silencing through an atypical GPCR or through receptor-independent G-protein activation. GPCR agonist-induced silencing exhibited dependence on the ubiquitin-proteasome system, as was shown previously for depolarization-induced silencing, implicating the degradation of vital synaptic proteins in silencing by GPCR activation. These data suggest that presynaptic muting in hippocampal neurons uses a G-protein-dependent but calcium-independent mechanism to depress presynaptic vesicle release

    Novel roles of the endocannabinoid system in modulating synaptic plasticity

    Get PDF
    Learning and memory formation are invaluable processes in human life; however, the cellular mechanisms that control these phenomena are largely unknown. Synaptic plasticity, which is the ability of the synapse between two neurons to change in strength based on activity, is believed to be a key process in the formation of memories and learning. Endocannabinoids (eCB) have recently emerged as important modulators of synaptic plasticity but their precise roles and mechanisms are not well understood and many contradictions exist in the current literature. We have investigated the roles of eCBs and their primary receptor, the CB1 receptor, in the central nervous system using electrophysiological recordings in rodent hippocampus. We find that a moderate frequency 10 Hz stimulation protocol produces long-term potentiation (LTP) that is modulated by eCBs in both mice and rats; but surprisingly, the roles played by eCBs differ greatly between species. In rats, 10 Hz LTP requires CB1 receptor activation, as it is completely abolished by the CB1 antagonists AM251 and SR141716. Unlike theta burst stimulation (TBS) induced LTP, 10 Hz LTP does not require NMDA receptor activation. However, it is prevented when both NMDA and group1 mGluR receptors are blocked. The 10 Hz LTP is also independent of GABAergic synaptic inhibition, suggesting it is a novel form of excitatory synaptic plasticity mediated by the eCB system in hippocampus. In mice, we find that CB1 has an inhibitory effect on 10 Hz induced LTP. When the receptor is genetically removed in CB1 (-/-) mice or pharmacologically blocked wild type mice, 10 Hz LTP is greatly facilitated. Similar to TBS LTP, 10 Hz LTP in mice is NMDA receptor mediated. Also, the ability to achieve successful long-term depression (LTD) is decreased in CB1 (-/-) mice; yet, the magnitude of successful LTD is not changed. Together, this data supports a role for the CB1 receptor in inhibiting the induction of LTP with moderate stimulation protocols in mice, while in rats CB1 activation is required for 10 Hz LTP. Overall, our data supports that eCBs are crucial modulators of synaptic plasticity, although the roles they play may differ among species

    Functional Interactions Between the Cannabinoid System and Memory Consolidation in the Hippocampus: A Synthesis of Findings from Behavior, Morphology, Physiology, and Synaptic Signaling in the Rat

    Get PDF
    The hippocampus is essential for long-term memory storage and consolidation. The dentate gyrus acts as a gateway into the hippocampal formation, specifically with reference to medial and lateral perforant path projections from the entorhinal cortex. The dentate gyrus and the hippocampus contain a high density of cannabinoid receptors and may be a key location in which cannabinoids exert influence to disrupt memory. Administration of a cannabinoid agonist often leads to short-term and long-term memory deficits in a variety of tasks. Cannabinoids can impair memory acquisition, task performance, along with memory consolidation and retrieval mechanisms. Endogenous cannabinoids are retrograde messengers involved in the rapid modulation of synaptic transmission. In the following study the effects of a potent cannabinoid agonist, WIN 55,212-2, on rodent learning and memory in the dentate gyrus were examined using a combination of morphological, behavioral, electrophysiological, and gene targeting approaches. The current study found that the cannabinoid agonist, WIN 55,212-2, altered granule cell spine density in the dendritic targets of the associational-commissural afferents and medial perforant path projections, but not lateral perforant path. Although intraperitoneal injections of WIN 55,212-2 resulted in a 24-hour consolidation deficit mediated by CB1 receptors, direct infusion of WIN 55,212-2 into the dentate gyrus did not influence 24-hour memory consolidation or alter immediate early gene expression in the dentate gyrus or parietal cortex. When examining in vivo electrophysiology, the cannabinoid agonist altered perforant path to dentate gyrus responses. WIN 55,212-2 blunted the magnitude of baseline population spike amplitude, without changing baseline fEPSP response. Furthermore, WIN 55,212-2 altered fEPSP paired pulse facilitation indicating decreased glutamate release and impaired GABAergic inhibition. Conversely, following high frequency stimulation, WIN 55,212-2 increased fEPSP fractional change. And lastly, WIN 55,212-2 elevated expression of the immediate early gene Arc in the high frequency stimulated dentate gyrus. These findings indicate cannabinoid modulation throughout the dentate gyrus and hippocampus is necessary for memory consolidation processes. When taken together, these results suggest cannabinoids alter normal learning and memory processes in the dentate gyrus by selectively altering medial perforant path projections, changing GABAergic feedforward inhibition, reducing glutamate release, and increasing expression of the immediate early gene Arc

    Targeting the endocannabinoid system for therapeutic purposes

    Get PDF
    The endocannabinoid system is an endogenous neuromodulatory system that regulates a plethora of physiological functions, including the modulation of memory, anxiety, pain, synaptic plasticity and neuronal excitability, among others. The activation of this system through exogenous or endogenous cannabinoid agonists has been proposed as a therapeutic strategy in different pathological states, although an important caveat to their use is the possible central adverse effects, such as memory impairment, anxiety and tolerance. The activity of the endocannabinoid system has been recently found involved in the pathophysiological conditions leading to obesity and fragile X syndrome, and the blockade of this system has also been investigated as a possible therapeutic approach. This thesis mainly focuses on the behavioral, paying more attention on the cognitive effects, cellular and molecular effects of exogenous and endogenous cannabinoids in order to identify potential therapeutic effects minimizing the negative consequences associated to the cannabinoid activation. This experimental research has been centered on the modulation of the positive and negative effects of Δ9-tetrahydrocannabinol, the main psychoactive component of the Cannabis sativa plant, the possibility to enhance the endogenous tone of specific endocannabinoids to improve certain therapeutic applications of cannabinoids, and the effects of inhibiting the endocannabinoid system in the amelioration of different traits associated to fragile X syndrome. The combination of behavioral, cellular and molecular approaches allowed the elucidation of different important aspects of the endocannabinoid system as an interesting therapeutic target.El sistema endocannabinoid és un sistema neuromodulador endogen que regula diferents funcions fisiològiques com la memòria, l’ansietat, el dolor i l’excitabilitat neuronal entre altres. L’activació d’aquest sistema per agonistes exògens o endògens ha estat usada com a estratègica terapèutica en diferents estats patològics tot i que els efectes adversos, com la pèrdua de memòria, l’ansietat o la tolerància, són el principal problema pel seu ús. El sistema endocannabinoid també s’ha trobat alterat en malalties com la obesitat o la síndrome del cromosoma X fràgil i, per tant, el bloqueig d’aquest sistema també s’ha emprat com a aproximació terapèutica. Aquesta tesis es centra en els efectes comportamentals i moleculars de l’administració exògena del Δ9-Tetrahydrocannabinol, el component principal de la planta Cannabis sativa, i en la modulació endògena del sitema endocannabinoid per tal de potenciar els efectes terapèutics minimitzant els efectes adversos dels cannabinoids. A més, en aquesta tesis també hem estudiat els posibles efectes terapèutics del bloqueig dels receptors cannabinoides en la síndrome del cromosoma X fràgil. La combinació d’aproximacions moleculars, farmacològiques, electrofisiològiques i comportamentals han permès el descobriment de diferents aspectes importants que permeten demostrar que el sistema endocannabinoid és una diana terapèutica molt interessant

    Endocannabinoid Signaling in Neural Circuits of the Olfactory and Limbic System

    Get PDF
    The endocannabinoid system with cannabinoid receptors, specifically cannabinoid receptor type 1 (CB1R), and their endogenous activators, the endocannabinoids, has emerged as an important neuromodulator system. Our understanding of the endocannabinoid system has significantly advanced in limbic system areas such as the hippocampus and the amygdala. However, the study of this signaling system in the olfactory pathway is still in its infancy. Here, we review the role of endocannabinoids as signaling molecules in activity-dependent regulation of dynamically changing neural networks in the limbic and olfactory system and the relevance of the endocannabinoid system for synaptic plasticity. We highlight the prospects for cannabinoid-based therapies in the treatment of various brain disorders and the role of endocannabinoids as neuroprotective agents. An increased understanding of cannabinoid signaling has the potential to pave the way for developing cannabis-related substances as medications
    • …
    corecore