946 research outputs found

    Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter

    Full text link
    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called sps(k,d,n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runs in time poly(nd^k), regardless of the base field. The only field for which polynomial time algorithms were previously known is F=Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a sps(k,d,n) circuit to k variables, but preserves the identity structure.Comment: 14 pages, 1 figure, preliminary versio

    Fractional coverings, greedy coverings, and rectifier networks

    Get PDF
    A rectifier network is a directed acyclic graph with distinguished sources and sinks; it is said to compute a Boolean matrix M that has a 1 in the entry (i,j) iff there is a path from the j-th source to the i-th sink. The smallest number of edges in a rectifier network that computes M is a classic complexity measure on matrices, which has been studied for more than half a century. We explore two techniques that have hitherto found little to no applications in this theory. They build upon a basic fact that depth-2 rectifier networks are essentially weighted coverings of Boolean matrices with rectangles. Using fractional and greedy coverings (defined in the standard way), we obtain new results in this area. First, we show that all fractional coverings of the so-called full triangular matrix have cost at least n log n. This provides (a fortiori) a new proof of the tight lower bound on its depth-2 complexity (the exact value has been known since 1965, but previous proofs are based on different arguments). Second, we show that the greedy heuristic is instrumental in tightening the upper bound on the depth-2 complexity of the Kneser-Sierpinski (disjointness) matrix. The previous upper bound is O(n^{1.28}), and we improve it to O(n^{1.17}), while the best known lower bound is Omega(n^{1.16}). Third, using fractional coverings, we obtain a form of direct product theorem that gives a lower bound on unbounded-depth complexity of Kronecker (tensor) products of matrices. In this case, the greedy heuristic shows (by an argument due to Lovász) that our result is only a logarithmic factor away from the "full" direct product theorem. Our second and third results constitute progress on open problem 7.3 and resolve, up to a logarithmic factor, open problem 7.5 from a recent book by Jukna and Sergeev (in Foundations and Trends in Theoretical Computer Science (2013)

    On the proof complexity of Paris-harrington and off-diagonal ramsey tautologies

    Get PDF
    We study the proof complexity of Paris-Harrington’s Large Ramsey Theorem for bi-colorings of graphs and of off-diagonal Ramsey’s Theorem. For Paris-Harrington, we prove a non-trivial conditional lower bound in Resolution and a non-trivial upper bound in bounded-depth Frege. The lower bound is conditional on a (very reasonable) hardness assumption for a weak (quasi-polynomial) Pigeonhole principle in RES(2). We show that under such an assumption, there is no refutation of the Paris-Harrington formulas of size quasipolynomial in the number of propositional variables. The proof technique for the lower bound extends the idea of using a combinatorial principle to blow up a counterexample for another combinatorial principle beyond the threshold of inconsistency. A strong link with the proof complexity of an unbalanced off-diagonal Ramsey principle is established. This is obtained by adapting some constructions due to Erdos and Mills. ˝ We prove a non-trivial Resolution lower bound for a family of such off-diagonal Ramsey principles

    An efficient full-wave solver for eddy currents

    Get PDF
    An integral equation reformulation of the Maxwell transmission problem is presented. The reformulation uses techniques such as tuning of free parameters and augmentation of close-to-rank-deficient operators. It is designed for the eddy current regime and works both for surfaces of genus 0 and 1. Well-conditioned systems and field representations are obtained despite the Maxwell transmission problem being ill-conditioned for genus 1 surfaces due to the presence of Neumann eigenfields. Furthermore, it is shown that these eigenfields, for ordinary conductors in the eddy current regime, are different from the classical Neumann eigenfields for superconductors. Numerical examples, based on the reformulation, give an unprecedented 13-digit accuracy both for transmitted and scattered fields
    • …
    corecore