81 research outputs found

    Minimizing Age-of-Information with Throughput Requirements in Multi-Path Network Communication

    Full text link
    We consider the scenario where a sender periodically sends a batch of data to a receiver over a multi-hop network, possibly using multiple paths. Our objective is to minimize peak/average Age-of-Information (AoI) subject to throughput requirements. The consideration of batch generation and multi-path communication differentiates our AoI study from existing ones. We first show that our AoI minimization problems are NP-hard, but only in the weak sense, as we develop an optimal algorithm with a pseudo-polynomial time complexity. We then prove that minimizing AoI and minimizing maximum delay are "roughly" equivalent, in the sense that any optimal solution of the latter is an approximate solution of the former with bounded optimality loss. We leverage this understanding to design a general approximation framework for our problems. It can build upon any α\alpha-approximation algorithm of the maximum delay minimization problem, to construct an (α+c)(\alpha+c)-approximate solution for minimizing AoI. Here cc is a constant depending on the throughput requirements. Simulations over various network topologies validate the effectiveness of our approach.Comment: Accepted by the ACM Twentieth International Symposium on Mobile Ad Hoc Networking and Computing (ACM MobiHoc 2019

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is an active research area that developed from the rich interaction among many mathematical areas, including combinatorics, graph theory, geometry, optimization, probability, theoretical computer science, and many others. It combines algorithmic and complexity analysis with a mature mathematical foundation and it yields both basic research and applications in manifold areas such as, for example, communications, economics, traffic, network design, VLSI, scheduling, production, computational biology, to name just a few. Through strong inner ties to other mathematical fields it has been contributing to and benefiting from areas such as, for example, discrete and convex geometry, convex and nonlinear optimization, algebraic and topological methods, geometry of numbers, matroids and combinatorics, and mathematical programming. Moreover, with respect to applications and algorithmic complexity, Combinatorial Optimization is an essential link between mathematics, computer science and modern applications in data science, economics, and industry

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Local movement: agent-based models of pedestrian flows

    Get PDF
    Modelling movement within the built environment has hitherto been focused on rather coarse spatial scales where the emphasis has been upon simulating flows of traffic between origins and destinations. Models of pedestrian movement have been sporadic, based largely on finding statistical relationships between volumes and the accessibility of streets, with no sustained efforts at improving such theories. The development of object-orientated computing and agent-based models which have followed in this wake, promise to change this picture radically. It is now possible to develop models simulating the geometric motion of individual agents in small-scale environments using theories of traffic flow to underpin their logic. In this paper, we outline such a model which we adapt to simulate flows of pedestrians between fixed points of entry - gateways - into complex environments such as city centres, and points of attraction based on the location of retail and leisure facilities which represent the focus of such movements. The model simulates the movement of each individual in terms of five components; these are based on motion in the direction of the most attractive locations, forward movement, the avoidance of local geometric obstacles, thresholds which constrain congestion, and movement which is influenced by those already moving towards various locations. The model has elements which enable walkers to self-organise as well as learn from their geometric experiences so far. We first outline the structure of the model, present a computable form, and illustrate how it can be programmed as a variant of cellular automata. We illustrate it using three examples: its application to an idealised mall where we show how two key components - local navigation of obstacles and movement towards points of global locational attraction - can be parameterised, an application to the more complex town centre of Wolverhampton (in the UK West Midlands) where the paths of individual walkers are used to explore the veracity of the model, and finally it application to the Tate Gallery complex in central London where the focus is on calibrating the model by letting individual agents learn from their experience of walking within the environment

    Combinatorial Optimization

    Get PDF
    This report summarizes the meeting on Combinatorial Optimization where new and promising developments in the field were discussed. Th

    National Educators' Workshop: Update 1989 Standard Experiments in Engineering Materials Science and Technology

    Get PDF
    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 89, held October 17 to 19, 1989 at the National Aeronautics and Space Administration, Hampton, Virginia. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community

    Flexible adaptation of iterative learning control with applications to synthetic bone graft manufacturing

    Get PDF
    Additive manufacturing processes are powerful tools; they are capable of fabricating structures without expensive structure specific tooling -- therefore structure designs can efficiently change from run-to-run -- and they can integrate multiple distinct materials into a single structure. This work investigates one such additive manufacturing process, micro-Robotic Deposition (μ\muRD), and its utility in fabricating advanced architecture synthetic bone grafts. These bone grafts, also known as synthetic bone scaffolds, are highly porous three-dimensional structures that provide a matrix to support the natural process of bone remodeling. Ideally, the synthetic scaffold will stimulate complete bone healing in a skeletal defect site and also resorb with time so that only natural tissue remains. The objective of this research is to develop methods to integrate different regions with different porous microstructures into a single scaffold; there is evidence that scaffolds with designed regions of specific microstructures can be used to elicit a strong and directed bone ingrowth response that improves bone ingrowth rate and quality. The key contribution of this work is the development of a control algorithm that precisely places different build materials in specified locations, thereby the fabrication of advanced architecture scaffolds is feasible. Under previous control methods, designs were relegated to be composed of a single material. The control algorithm developed in this work is an adaptation of Iterative Learning Control (ILC), a control method that is typically best suited for mass manufacturing applications. This adaptation reorients the ILC framework such that it is more amenable to additive manufacturing systems, such as μ\muRD. Control efficacy is demonstrated by the fabrication of advanced architecture scaffolds. Scaffolds with contoured forms, multiple domains with distinct porous microstructures, and hollow cavities are feasible when the developed controller is used in conjunction with a novel manufacturing workflow in which scaffolds are filled within patterned molds that support overhanging features. An additional application demonstrates controller performance on the robot positioning problem; this work has implications for additive manufacturing in general

    Calibration and characterization of a low-cost wireless sensor for applications in CNC end milling

    Get PDF
    Central to creating a smart machining system is the challenge of collecting detailed information about the milling process at the tool tip. This work discusses the design, static calibration, dynamic characterization, and implementation of a low-cost wireless sensor for end-milling. Our novel strain-based sensor, called the Smart Tool, is shown to perform well in a laboratory setting with accuracy and dynamic behavior comparable to that of the Kistler 3-axis force dynamometer. The Smart Tool is capable of measuring static loads with a total measurement uncertainty of less than 3 percent full scale, but has a natural frequency of approximately 630 Hz. For this reason, signal conditioning of the strain signal is required when vibrations are large. Several techniques in signal processing are investigated to show that the sensor is useful for force estimation, chatter prediction, force model calibration, and dynamic parameter identification. The presented techniques include a discussion of the Kalman filter and Weiner filter for signal enhancement, Linear Predictive Coding for system identification, model-based filtering for force estimation, and sub-optimal linear filters for removing forced vibrations

    On two-sided controls of a linear diffusion

    Get PDF
    siirretty Doriast
    corecore