8,061 research outputs found

    Gradient-based assessment of habitat quality for spectral ecosystem monitoring

    Get PDF
    The monitoring of ecosystems alterations has become a crucial task in order to develop valuable habitats for rare and threatened species. The information extracted from hyperspectral remote sensing data enables the generation of highly spatially resolved analyses of such species’ habitats. In our study we combine information from a species ordination with hyperspectral reflectance signatures to predict occurrence probabilities for Natura 2000 habitat types and their conservation status. We examine how accurate habitat types and habitat threat, expressed by pressure indicators, can be described in an ordination space using spatial correlation functions from the geostatistic approach. We modeled habitat quality assessment parameters using floristic gradients derived by non-metric multidimensional scaling on the basis of 58 field plots. In the resulting ordination space, the variance structure of habitat types and pressure indicators could be explained by 69% up to 95% with fitted variogram models with a correlation to terrestrial mapping of >0.8. Models could be used to predict habitat type probability, habitat transition, and pressure indicators continuously over the whole ordination space. Finally, partial least squares regression (PLSR) was used to relate spectral information from AISA DUAL imagery to floristic pattern and related habitat quality. In general, spectral transferability is supported by strong correlation to ordination axes scores (R2^{2} = 0.79–0.85), whereas second axis of dry heaths (R2^{2} = 0.13) and first axis for pioneer grasslands (R2^{2} = 0.49) are more difficult to describe

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Predicting water quality and ecological responses

    Get PDF
    Abstract Changes to climate are predicted to have effects on freshwater streams. Stream flows are likely to change, with implications for freshwater ecosystems and water quality. Other stressors such as population growth, community preferences and management policies can be expected to interact in various ways with climate change and stream flows, and outcomes for freshwater ecosystems and water quality are uncertain. Managers of freshwater ecosystems and water supplies could benefit from being able to predict the scales of likely changes. This project has developed and applied a linked modelling framework to assess climate change impacts on water quality regimes and ecological responses. The framework is designed to inform water planning and climate adaptation activities. It integrates quantitative tools, and predicts relationships between future climate, human activities, water quality and ecology, thereby filling a gap left by the considerable research effort so far invested in predicting stream flows. The modelling framework allows managers to explore potential changes in the water quality and ecology of freshwater systems in response to plausible scenarios for climate change and management adaptations. Although set up for the Upper Murrumbidgee River catchment in southern NSW and ACT, the framework was planned to be transferable to other regions where suitable data are available. The approach and learning from the project appear to have the potential to be broadly applicable. We selected six climate scenarios representing minor, moderate and major changes in flow characteristics for 1oC and 2oC temperature increases. These were combined with four plausible alternative management adaptations that might be used to modify water supply, urban water demand and stream flow regimes in the Upper Murrumbidgee catchment. The Bayesian Network (BN) model structure we used was developed using both a ‘top down’ and ‘bottom up’ approach. From analyses combined with expert advice, we identified the causal structure linking climate variables to stream flow, water quality attributes, land management and ecological responses (top down). The ‘bottom up’ approach focused on key ecological outcomes and key drivers, and helped produce efficient models. The result was six models for macroinvertebrates, and one for fish. In the macroinvertebrate BN models, nodes were discretised using statistical/empirical derived thresholds using new techniques. The framework made it possible to explore how ecological communities respond to changes in climate and management activities. Particularly, we focused on the effects of water quality and quantity on ecological responses. The models showed a strong regional response reflecting differences across 18 regions in the catchment. In two regions the management alternatives were predicted to have stronger effects than climate change. In three other regions the predicted response to climate change was stronger. Analyses of water quality suggested minor changes in the probability of water quality exceeding thresholds designed to protect aquatic ecosystems. The ‘bottom up’ approach limited the framework’s transferability by being specific to the Upper Murrumbidgee catchment data. Indeed, to meet stakeholder questions models need to be specifically tailored. Therefore the report proposes a general model-building framework for transferring the approach, rather than the models, to other regions.  Please cite this report as: Dyer, F, El Sawah, S, Lucena-Moya, P, Harrison, E, Croke, B, Tschierschke, A, Griffiths, R, Brawata, R, Kath, J, Reynoldson, T, Jakeman, T 2013 Predicting water quality and ecological responses, National Climate Change Adaptation Research Facility, Gold Coast, pp. 110 Changes to climate are predicted to have effects on freshwater streams. Stream flows are likely to change, with implications for freshwater ecosystems and water quality. Other stressors such as population growth, community preferences and management policies can be expected to interact in various ways with climate change and stream flows, and outcomes for freshwater ecosystems and water quality are uncertain. Managers of freshwater ecosystems and water supplies could benefit from being able to predict the scales of likely changes. This project has developed and applied a linked modelling framework to assess climate change impacts on water quality regimes and ecological responses. The framework is designed to inform water planning and climate adaptation activities. It integrates quantitative tools, and predicts relationships between future climate, human activities, water quality and ecology, thereby filling a gap left by the considerable research effort so far invested in predicting stream flows. The modelling framework allows managers to explore potential changes in the water quality and ecology of freshwater systems in response to plausible scenarios for climate change and management adaptations. Although set up for the Upper Murrumbidgee River catchment in southern NSW and ACT, the framework was planned to be transferable to other regions where suitable data are available. The approach and learning from the project appear to have the potential to be broadly applicable. We selected six climate scenarios representing minor, moderate and major changes in flow characteristics for 1oC and 2oC temperature increases. These were combined with four plausible alternative management adaptations that might be used to modify water supply, urban water demand and stream flow regimes in the Upper Murrumbidgee catchment. The Bayesian Network (BN) model structure we used was developed using both a ‘top down’ and ‘bottom up’ approach. From analyses combined with expert advice, we identified the causal structure linking climate variables to stream flow, water quality attributes, land management and ecological responses (top down). The ‘bottom up’ approach focused on key ecological outcomes and key drivers, and helped produce efficient models. The result was six models for macroinvertebrates, and one for fish. In the macroinvertebrate BN models, nodes were discretised using statistical/empirical derived thresholds using new techniques. The framework made it possible to explore how ecological communities respond to changes in climate and management activities. Particularly, we focused on the effects of water quality and quantity on ecological responses. The models showed a strong regional response reflecting differences across 18 regions in the catchment. In two regions the management alternatives were predicted to have stronger effects than climate change. In three other regions the predicted response to climate change was stronger. Analyses of water quality suggested minor changes in the probability of water quality exceeding thresholds designed to protect aquatic ecosystems. The ‘bottom up’ approach limited the framework’s transferability by being specific to the Upper Murrumbidgee catchment data. Indeed, to meet stakeholder questions models need to be specifically tailored. Therefore the report proposes a general model-building framework for transferring the approach, rather than the models, to other regions.&nbsp

    Lake Mead Science Symposium, January 13 an 14, 2009, Las Vegas, Nevada: Program

    Full text link
    Conference program for the 2009 Lake Mead Science Symposium. Includes abstracts of presentations, registration packet, exhibitor and sponsor information

    Object-based mapping of temperate marine habitats from multi-resolution remote sensing data

    Get PDF
    PhD ThesisHabitat maps are needed to inform marine spatial planning but current methods of field survey and data interpretation are time-consuming and subjective. Object-based image analysis (OBIA) and remote sensing could deliver objective, cost-effective solutions informed by ecological knowledge. OBIA enables development of automated workflows to segment imagery, creating ecologically meaningful objects which are then classified based on spectral or geometric properties, relationships to other objects and contextual data. Successfully applied to terrestrial and tropical marine habitats for over a decade, turbidity and lack of suitable remotely sensed data had limited OBIA’s use in temperate seas to date. This thesis evaluates the potential of OBIA and remote sensing to inform designation, management and monitoring of temperate Marine Protected Areas (MPAs) through four studies conducted in English North Sea MPAs. An initial study developed OBIA workflows to produce circalittoral habitat maps from acoustic data using sequential threshold-based and nearest neighbour classifications. These methods produced accurate substratum maps over large areas but could not reliably predict distribution of species communities from purely physical data under largely homogeneous environmental conditions. OBIA methods were then tested in an intertidal MPA with fine-scale habitat heterogeneity using high resolution imagery collected by unmanned aerial vehicle. Topographic models were created from the imagery using photogrammetry. Validation of these models through comparison with ground truth measurements showed high vertical accuracy and the ability to detect decimetre-scale features. The topographic and spectral layers were interpreted simultaneously using OBIA, producing habitat maps at two thematic scales. Classifier comparison showed that Random Forests Abstract ii outperformed the nearest neighbour approach, while a knowledge-based rule set produced accurate results but requires further research to improve reproducibility. The final study applied OBIA methods to aerial and LiDAR time-series, demonstrating that despite considerable variability in the data, pre- and post-classification change detection methods had sufficient accuracy to monitor deviation from a background level of natural environmental fluctuation. This thesis demonstrates the potential of OBIA and remote sensing for large-scale rapid assessment, detailed surveillance and change detection, providing insight to inform choice of classifier, sampling protocol and thematic scale which should aid wider adoption of these methods in temperate MPAs.Natural Environment Research Council and Natural Englan

    Soil biodiversity: functions, threats and tools for policy makers

    Get PDF
    Human societies rely on the vast diversity of benefits provided by nature, such as food, fibres, construction materials, clean water, clean air and climate regulation. All the elements required for these ecosystem services depend on soil, and soil biodiversity is the driving force behind their regulation. With 2010 being the international year of biodiversity and with the growing attention in Europe on the importance of soils to remain healthy and capable of supporting human activities sustainably, now is the perfect time to raise awareness on preserving soil biodiversity. The objective of this report is to review the state of knowledge of soil biodiversity, its functions, its contribution to ecosystem services and its relevance for the sustainability of human society. In line with the definition of biodiversity given in the 1992 Rio de Janeiro Convention, soil biodiversity can be defined as the variation in soil life, from genes to communities, and the variation in soil habitats, from micro-aggregates to entire landscapes. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment
    corecore