139 research outputs found

    Does a Citation-Index for Websites Make Sense?

    Get PDF
    The usefulness of external references to websites is a crucial factor of web-monitoring. It is of high general interest whether your website is visited by the estimated target group or not. This publication measures the value of references of websites by bringing the idea of citationindex to web-analytic tools. The approach presented is considering the number and quality of actions a visitor of a specific website does and the time s/he spent on this website as well as the previous website the user is coming from. The combination of these three parameters are expressed by formulas and afterwards visualized by different tools. Finally this approach is tested and discussed on an existing project. It can be concluded that this concept is indeed useful to get a deeper insight whether external websites addressing the intended target group or not

    Application of the self-organising map to trajectory classification

    Get PDF
    This paper presents an approach to the problem of automatically classifying events detected by video surveillance systems; specifically, of detecting unusual or suspicious movements. Approaches to this problem typically involve building complex 3D-models in real-world coordinates to provide trajectory information for the classifier. In this paper we show that analysis of trajectories may be carried out in a model-free fashion, using self-organising feature map neural networks to learn the characteristics of normal trajectories, and to detect novel ones. Trajectories are represented using positional and first and second order motion information, with moving-average smoothing. This allows novelty detection to be applied on a point-by-point basis in real time, and permits both instantaneous motion and whole trajectory motion to be subjected to novelty detection

    An autonomous GNSS anti-spoofing technique

    Get PDF
    open3siIn recent years, the problem of Position, Navigation and Timing (PNT) resiliency has received significant attention due to an increasing awareness on threats and the vulnerability of the current GNSS signals. Several proposed solutions make uses of cryptography to protect against spoofing. A limitation of cryptographic techniques is that they introduce a communication and processing computation overhead and may impact the performance in terms of availability and continuity for GNSS users. This paper introduces autonomous non cryptographic antispoofing mechanisms, that exploit semi-codeless receiver techniques to detect spoofing for signals with a component making use of spreading code encryption.openCaparra, Gianluca; Wullems, Christian; Ioannides, Rigas T.Caparra, Gianluca; Wullems, Christian; Ioannides, Rigas T

    Liquid Journals: Knowledge Dissemination in the Web Era

    Get PDF
    In this paper we redefine the notion of "scientific journal" to update it to the age of the Web. We explore the historical reasons behind the current journal model, and we show that this model is essentially the same today, even if the Web has made dissemination essentially free. We propose a notion of liquid and personal journals that evolve continuously in time and that are targeted to serve individuals or communities of arbitrarily small or large scales. The liquid journals provide "interesting" content, in the form of "scientific contributions" that are "related" to a certain paper, topic, or area, and that are posted (on their web site, repositories, traditional journals) by "inspiring" researchers. As such, the liquid journal separates the notion of "publishing" (which can be achieved by submitting to traditional peer review journals or just by posting content on the Web) from the appearance of contributions into the journals, which are essentially collections of content. In this paper we introduce the liquid journal model, and demonstrate through some examples its value to individuals and communities. Finally, we describe an architecture and a working prototype that implements the proposed model

    Essentials of Augmented Reality Software Development under Android Patform

    Get PDF
    Liitreaalsus on ĂŒha enam arenev tehnoloogia. Lisaks meelelahutuseleon liitreaalsus leidnud kasutust nii meditsiinis, sĂ”javĂ€es, masinaehituses kui ka teistes suurtes ettevĂ”tluse ning riigiga seotud valdkondades. Arendusmeeskondade eesmĂ€rk on saavutada vĂ”imalikult hea jĂ”udlus ning visuaalsed tulemused nende poolt toodetavas tarkvaras sĂ”ltumata kasutuspiirkonnast. Liitreaalsuse tarkvara pĂ”hitehnoloogia sĂ”ltub vĂ€gapalju meeskonnale kĂ€ttesaadavatest ressurssidest. See tĂ€hendab, et paremate vĂ”imalustega organisatsioonid saavad lubada endale tipptehnoloogiaid ning oma arendusmeeskondi, mille abil on neil vĂ”imalus implementeerida uusi liitreaalsuse tarkvaralahendusi. Samal ajal on aga tavalised firmad piiratud aja, meeskonna ja raha poolest, mis omakorda sunnib neid kasutama turul olemasolevaid lahendusi - tööriistakomplekte.Sellest lĂ€htuvalt keskendub kĂ€esolev töö vajalikele teadmistele, mida lĂ€heb vaja erinevate liitreaalsuse tööriistakomplektide kasutamisel. Selleks, et luua edukalt valmis liitreaalsuse tarkvara, on vĂ€lja valitud kindlad raamistikud, millest koostatakse ĂŒlevaade, mida testitakse ning vĂ”rreldakse. Lisaks sellele Ă”petatakse uurimise kĂ€igus selgeks ka mĂ”ned pĂ”hiteadmised liitreaalsuse arendamiseks Androidi platvormi nĂ€itel.Augmented Reality (AR) is an emerging technology. Besides entertainment, AR also is found to be used in medicine, military, engineering and other major fields of enterprise and government. Regardless of the application area, development teams usually target to achieve best performance and visual results in the AR software that they are providing. In addition, the core technology used behind a particular AR software depends a lot on resources available to the team. This means, that organizations with large resources can afford to implement AR software solutions using cutting-edge technologies build by their own engineering units, whereas ordinary companies are usually limited in time, staff and budget. Hence, forcing them to use existing market solutions - toolkits.From this perspective, this thesis work focuses on providing the basics of working with AR toolkits. In order to succeed in building an AR software, particular toolkits are selected to be reviewed, tested and compared. Moreover, during the investigation process some essentials of the AR development under Android platform are also studied

    Temporal contrast-dependent modeling of laser-driven solids - studying femtosecond-nanometer interactions and probing

    Get PDF
    Establishing precise control over the unique beam parameters of laser-accelerated ions from relativistic ultra-short pulse laser-solid interactions has been a major goal for the past 20 years. While the spatio-temporal coupling of laser-pulse and target parameters create transient phenomena at femtosecond-nanometer scales that are decisive for the acceleration performance, these scales have also largely been inaccessible to experimental observation. Computer simulations of laser-driven plasmas provide valuable insight into the physics at play. Nevertheless, predictive capabilities are still lacking due to the massive computational cost to perform these in 3D at high resolution for extended simulation times. This thesis investigates the optimal acceleration of protons from ultra-thin foils following the interaction with an ultra-short ultra-high intensity laser pulse, including realistic contrast conditions up to a picosecond before the main pulse. Advanced ionization methods implemented into the highly scalable, open-source particle-in-cell code PIConGPU enabled this study. Supporting two experimental campaigns, the new methods led to a deeper understanding of the physics of Laser-Wakefield acceleration and Colloidal Crystal melting, respectively, for they now allowed to explain experimental observations with simulated ionization- and plasma dynamics. Subsequently, explorative 3D3V simulations of enhanced laser-ion acceleration were performed on the Swiss supercomputer Piz Daint. There, the inclusion of realistic laser contrast conditions altered the intra-pulse dynamics of the acceleration process significantly. Contrary to a perfect Gaussian pulse, a better spatio-temporal overlap of the protons with the electron sheath origin allowed for full exploitation of the accelerating potential, leading to higher maximum energies. Adapting well-known analytic models allowed to match the results qualitatively and, in chosen cases, quantitatively. However, despite complex 3D plasma dynamics not being reflected within the 1D models, the upper limit of ion acceleration performance within the TNSA scenario can be predicted remarkably well. Radiation signatures obtained from synthetic diagnostics of electrons, protons, and bremsstrahlung photons show that the target state at maximum laser intensity is encoded, previewing how experiments may gain insight into this previously unobservable time frame. Furthermore, as X-ray Free Electron Laser facilities have only recently begun to allow observations at femtosecond-nanometer scales, benchmarking the physics models for solid-density plasma simulations is now in reach. Finally, this thesis presents the first start-to-end simulations of optical-pump, X-ray-probe laser-solid interactions with the photon scattering code ParaTAXIS. The associated PIC simulations guided the planning and execution of an LCLS experiment, demonstrating the first observation of solid-density plasma distribution driven by near-relativistic short-pulse laser pulses at femtosecond-nanometer resolution

    Temporal validation of particle filters for video tracking

    Full text link
    This is the author’s version of a work that was accepted for publication in Journal Computer Vision and Image Understanding. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal Computer Vision and Image Understanding, 131 (2015) DOI: 10.1016/j.cviu.2014.06.016A novel approach to determine adaptively the temporal consistency of Particle Filters.The proposed method is demonstrated on online performance evaluation of tracking.Temporal consistency is modeled by convolutions of mixtures of Gamma distributions.The proposed method does not need thresholds and can be used on large datasets. We present an approach for determining the temporal consistency of Particle Filters in video tracking based on model validation of their uncertainty over sliding windows. The filter uncertainty is related to the consistency of the dispersion of the filter hypotheses in the state space. We learn an uncertainty model via a mixture of Gamma distributions whose optimum number is selected by modified information-based criteria. The time-accumulated model is estimated as the sequential convolution of the uncertainty model. Model validation is performed by verifying whether the output of the filter belongs to the convolution model through its approximated cumulative density function. Experimental results and comparisons show that the proposed approach improves both precision and recall of competitive approaches such as Gaussian-based online model extraction, bank of Kalman filters and empirical thresholding. We combine the proposed approach with a state-of-the-art online performance estimator for video tracking and show that it improves accuracy compared to the same estimator with manually tuned thresholds while reducing the overall computational cost.This work was partially supported by the Spanish Government (EventVideo, TEC2011-25995) and by the EU Crowded Environments monitoring for Activity Understanding and Recognition (CENTAUR, FP7-PEOPLE-2012-IAPP) project under GA number 324359. Most of the work reported in this paper was done at the Centre for Intelligent Sensing in Queen Mary University of London

    Temporal contrast-dependent modeling of laser-driven solids: studying femtosecond-nanometer interactions and probing

    Get PDF
    Establishing precise control over the unique beam parameters of laser-accelerated ions from relativistic ultra-short pulse laser-solid interactions has been a major goal for the past 20 years. While the spatio-temporal coupling of laser-pulse and target parameters create transient phenomena at femtosecond-nanometer scales that are decisive for the acceleration performance, these scales have also largely been inaccessible to experimental observation. Computer simulations of laser-driven plasmas provide valuable insight into the physics at play. Nevertheless, predictive capabilities are still lacking due to the massive computational cost to perform these in 3D at high resolution for extended simulation times. This thesis investigates the optimal acceleration of protons from ultra-thin foils following the interaction with an ultra-short ultra-high intensity laser pulse, including realistic contrast conditions up to a picosecond before the main pulse. Advanced ionization methods implemented into the highly scalable, open-source particle-in-cell code PIConGPU enabled this study. Supporting two experimental campaigns, the new methods led to a deeper understanding of the physics of Laser-Wake eld acceleration and Colloidal Crystal melting, respectively, for they now allowed to explain experimental observations with simulated ionization- and plasma dynamics. Subsequently, explorative 3D3V simulations of enhanced laser-ion acceleration were performed on the Swiss supercomputer Piz Daint. There, the inclusion of realistic laser contrast conditions altered the intra-pulse dynamics of the acceleration process significantly. Contrary to a perfect Gaussian pulse, a better spatio-temporal overlap of the protons with the electron sheath origin allowed for full exploitation of the accelerating potential, leading to higher maximum energies. Adapting well-known analytic models allowed to match the results qualitatively and, in chosen cases, quantitatively. However, despite complex 3D plasma dynamics not being reflected within the 1D models, the upper limit of ion acceleration performance within the TNSA scenario can be predicted remarkably well. Radiation signatures obtained from synthetic diagnostics of electrons, protons, and bremsstrahlung photons show that the target state at maximum laser intensity is encoded, previewing how experiments may gain insight into this previously unobservable time frame. Furthermore, as X-ray Free Electron Laser facilities have only recently begun to allow observations at femtosecond-nanometer scales, benchmarking the physics models for solid-density plasma simulations is now in reach. Finally, this thesis presents the first start-to-end simulations of optical-pump, X-ray-probe laser-solid interactions with the photon scattering code ParaTAXIS. The associated PIC simulations guided the planning and execution of an LCLS experiment, demonstrating the first observation of solid-density plasma distribution driven by near-relativistic short-pulse laser pulses at femtosecond-nanometer resolution.Die Erlangung prĂ€ziser Kontrolle über die einzigartigen Strahlparameter von laserbeschleunigten Ionen aus relativistischen Ultrakurzpuls-Laser-Festkörper-Wechselwirkungen ist ein wesentliches Ziel der letzten 20 Jahre. WĂ€hrend die rĂ€umlich-zeitliche Kopplung von Laserpuls und Targetparametern transiente PhĂ€nomene auf Femtosekunden- und Nanometerskalen erzeugt, die für den Beschleunigungsprozess entscheidend sind, waren diese Skalen der experimentellen Beobachtung bisher weitgehend unzugĂ€nglich. Computersimulationen von lasergetriebenen Plasmen liefern dabei wertvolle Einblicke in die zugrunde liegende Physik. Dennoch mangelt es noch an Vorhersagemöglichkeiten aufgrund des massiven Rechenaufwands, um Parameterstudien in 3D mit hoher Auflösung für lĂ€ngere Simulationszeiten durchzuführen. In dieser Arbeit wird die optimale Beschleunigung von Protonen aus ultradünnen Folien nach der Wechselwirkung mit einem ultrakurzen UltrahochintensitĂ€ts-Laserpuls unter Einbeziehung realistischer Kontrastbedingungen bis zu einer Pikosekunde vor dem Hauptpuls untersucht. Hierbei ermöglichen neu implementierte fortschrittliche Ionisierungsmethoden für den hoch skalierbaren, quelloffenen Partikel-in-Zelle-Code PIConGPU von nun an Studien dieser Art. Bei der Unterstützung zweier Experimentalkampagnen führten diese Methoden zu einem tieferen VerstĂ€ndnis der Laser-Wake eld-Beschleunigung bzw. des Schmelzens kolloidaler Kristalle, da nun experimentelle Beobachtungen mit simulierter Ionisations- und Plasmadynamik erklĂ€rt werden konnten. Im Anschluss werden explorative 3D3V Simulationen verbesserter Laser-Ionen-Beschleunigung vorgestellt, die auf dem Schweizer Supercomputer Piz Daint durchgeführt wurden. Dabei verĂ€nderte die Einbeziehung realistischer Laserkontrastbedingungen die Intrapulsdynamik des Beschleunigungsprozesses signifikant. Im Gegensatz zu einem perfekten Gauß-Puls erlaubte eine bessere rĂ€umlich-zeitliche Überlappung der Protonen mit dem Ursprung der Elektronenwolke die volle Ausnutzung des Beschleunigungspotentials, was zu höheren maximalen Energien führte. Die Adaptation bekannter analytischer Modelle erlaubte es, die Ergebnisse qualitativ und in ausgewĂ€hlten FĂ€llen auch quantitativ zu bestĂ€tigen. Trotz der in den 1D-Modellen nicht abgebildeten komplexen 3D-Plasmadynamik zeigt die Vorhersage erstaunlich gut das obere Limit der erreichbaren Ionen-Energien im TNSA Szenario. Strahlungssignaturen, die aus synthethischen Diagnostiken von Elektronen, Protonen und Bremsstrahlungsphotonen gewonnen wurden, zeigen, dass der Target-Zustand bei maximaler LaserintensitĂ€t einkodiert ist, was einen Ausblick darauf gibt, wie Experimente Einblicke in dieses bisher unbeobachtbare Zeitfenster gewinnen können. Mit neuen Freie-Elektronen-Röntgenlasern sind Beobachtungen auf Femtosekunden-Nanometerskalen endlich zugĂ€nglich geworden. Damit liegt ein Benchmarking der physikalischen Modelle für Plasmasimulationen bei Festkörperdichte nun in Reichweite, aber Experimente sind immer noch selten, komplex, und schwer zu interpretieren. Zuletzt werden daher in dieser Arbeit die ersten Start-zu-End-Simulationen der Pump-Probe Wechselwirkungen von optischem sowie Röntgenlaser mit Festkörpern mittels des Photonenstreu-Codes ParaTAXIS vorgestellt. Darüber hinaus dienten die zugehörigen PIC-Simulationen als Grundlage für die Planung und Durchführung eines LCLS-Experiments zur erstmaligen Beobachtung einer durch nah-relativistische Kurzpuls-Laserpulse getriebenen Festkörper-Plasma-Dichte, dessen Auflösungsbereich gleichzeitig bis auf Femtosekunden und Nanometer vordrang
    • 

    corecore