180,335 research outputs found

    Making prolog more expressive

    Get PDF
    AbstractThis paper introduces extended programs and extended goals for logic programming. A clause in an extended program can have an arbitrary first-order formula as its body. Similarly, an extended goal can have an arbitrary first-order formula as its body. The main results of the paper are the soundness of the negation as failure rule and SLDNF-resolution for extended programs and goals. We show how the increased expressibility of extended programs and goals can be easily implemented in any PROLOG system which has a sound implementation of the negation as failure rule. We also show how these ideas can be used to implement first-order logic as a query language in a deductive database system. An application to integrity constraints in deductive database systems is also given

    Updating DL-Lite ontologies through first-order queries

    Get PDF
    In this paper we study instance-level update in DL-LiteA, the description logic underlying the OWL 2 QL standard. In particular we focus on formula-based approaches to ABox insertion and deletion. We show that DL-LiteA, which is well-known for enjoying first-order rewritability of query answering, enjoys a first-order rewritability property also for updates. That is, every update can be reformulated into a set of insertion and deletion instructions computable through a nonrecursive datalog program. Such a program is readily translatable into a first-order query over the ABox considered as a database, and hence into SQL. By exploiting this result, we implement an update component for DLLiteA-based systems and perform some experiments showing that the approach works in practice.Peer ReviewedPostprint (author's final draft

    Applications of Multi-Valued Quantum Algorithms

    Full text link
    This paper generalizes both the binary Deutsch-Jozsa and Grover algorithms to nn-valued logic using the quantum Fourier transform. Our extended Deutsch-Jozsa algorithm is not only able to distinguish between constant and balanced Boolean functions in a single query, but can also find closed expressions for classes of affine logical functions in quantum oracles, accurate to a constant term. Furthermore, our multi-valued extension of the Grover algorithm for quantum database search requires fewer qudits and hence a substantially smaller memory register, as well as fewer wasted information states, to implement. We note several applications of these algorithms and their advantages over the binary cases.Comment: 12 pages, 4 figures; updated version of paper for ISMVL 2007; contains new proof of multi-valued Grover algorithm time complexity, with typos correcte

    B-LOG: A branch and bound methodology for the parallel execution of logic programs

    Get PDF
    We propose a computational methodology -"B-LOG"-, which offers the potential for an effective implementation of Logic Programming in a parallel computer. We also propose a weighting scheme to guide the search process through the graph and we apply the concepts of parallel "branch and bound" algorithms in order to perform a "best-first" search using an information theoretic bound. The concept of "session" is used to speed up the search process in a succession of similar queries. Within a session, we strongly modify the bounds in a local database, while bounds kept in a global database are weakly modified to provide a better initial condition for other sessions. We also propose an implementation scheme based on a database machine using "semantic paging", and the "B-LOG processor" based on a scoreboard driven controller

    Query Evaluation in Deductive Databases

    Get PDF
    It is desirable to answer queries posed to deductive databases by computing fixpoints because such computations are directly amenable to set-oriented fact processing. However, the classical fixpoint procedures based on bottom-up processing — the naive and semi-naive methods — are rather primitive and often inefficient. In this article, we rely on bottom-up meta-interpretation for formalizing a new fixpoint procedure that performs a different kind of reasoning: We specify a top-down query answering method, which we call the Backward Fixpoint Procedure. Then, we reconsider query evaluation methods for recursive databases. First, we show that the methods based on rewriting on the one hand, and the methods based on resolution on the other hand, implement the Backward Fixpoint Procedure. Second, we interpret the rewritings of the Alexander and Magic Set methods as specializations of the Backward Fixpoint Procedure. Finally, we argue that such a rewriting is also needed in a database context for implementing efficiently the resolution-based methods. Thus, the methods based on rewriting and the methods based on resolution implement the same top-down evaluation of the original database rules by means of auxiliary rules processed bottom-up
    • …
    corecore