28 research outputs found

    Optimising multimodal fusion for biometric identification systems

    Get PDF
    Biometric systems are automatic means for imitating the human brain’s ability of identifying and verifying other humans by their behavioural and physiological characteristics. A system, which uses more than one biometric modality at the same time, is known as a multimodal system. Multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically provide better recognition performance compared to systems based on a single biometric modality. This thesis addresses some issues related to the implementation of multimodal biometric identity verification systems. The thesis assesses the feasibility of using commercial offthe-shelf products to construct deployable multimodal biometric system. It also identifies multimodal biometric fusion as a challenging optimisation problem when one considers the presence of several configurations and settings, in particular the verification thresholds adopted by each biometric device and the decision fusion algorithm implemented for a particular configuration. The thesis proposes a novel approach for the optimisation of multimodal biometric systems based on the use of genetic algorithms for solving some of the problems associated with the different settings. The proposed optimisation method also addresses some of the problems associated with score normalization. In addition, the thesis presents an analysis of the performance of different fusion rules when characterising the system users as sheep, goats, lambs and wolves. The results presented indicate that the proposed optimisation method can be used to solve the problems associated with threshold settings. This clearly demonstrates a valuable potential strategy that can be used to set a priori thresholds of the different biometric devices before using them. The proposed optimisation architecture addressed the problem of score normalisation, which makes it an effective “plug-and-play” design philosophy to system implementation. The results also indicate that the optimisation approach can be used for effectively determining the weight settings, which is used in many applications for varying the relative importance of the different performance parameters

    Multi-system Biometric Authentication: Optimal Fusion and User-Specific Information

    Get PDF
    Verifying a person's identity claim by combining multiple biometric systems (fusion) is a promising solution to identity theft and automatic access control. This thesis contributes to the state-of-the-art of multimodal biometric fusion by improving the understanding of fusion and by enhancing fusion performance using information specific to a user. One problem to deal with at the score level fusion is to combine system outputs of different types. Two statistically sound representations of scores are probability and log-likelihood ratio (LLR). While they are equivalent in theory, LLR is much more useful in practice because its distribution can be approximated by a Gaussian distribution, which makes it useful to analyze the problem of fusion. Furthermore, its score statistics (mean and covariance) conditioned on the claimed user identity can be better exploited. Our first contribution is to estimate the fusion performance given the class-conditional score statistics and given a particular fusion operator/classifier. Thanks to the score statistics, we can predict fusion performance with reasonable accuracy, identify conditions which favor a particular fusion operator, study the joint phenomenon of combining system outputs with different degrees of strength and correlation and possibly correct the adverse effect of bias (due to the score-level mismatch between training and test sets) on fusion. While in practice the class-conditional Gaussian assumption is not always true, the estimated performance is found to be acceptable. Our second contribution is to exploit the user-specific prior knowledge by limiting the class-conditional Gaussian assumption to each user. We exploit this hypothesis in two strategies. In the first strategy, we combine a user-specific fusion classifier with a user-independent fusion classifier by means of two LLR scores, which are then weighted to obtain a single output. We show that combining both user-specific and user-independent LLR outputs always results in improved performance than using the better of the two. In the second strategy, we propose a statistic called the user-specific F-ratio, which measures the discriminative power of a given user based on the Gaussian assumption. Although similar class separability measures exist, e.g., the Fisher-ratio for a two-class problem and the d-prime statistic, F-ratio is more suitable because it is related to Equal Error Rate in a closed form. F-ratio is used in the following applications: a user-specific score normalization procedure, a user-specific criterion to rank users and a user-specific fusion operator that selectively considers a subset of systems for fusion. The resultant fusion operator leads to a statistically significantly increased performance with respect to the state-of-the-art fusion approaches. Even though the applications are different, the proposed methods share the following common advantages. Firstly, they are robust to deviation from the Gaussian assumption. Secondly, they are robust to few training data samples thanks to Bayesian adaptation. Finally, they consider both the client and impostor information simultaneously

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    Motion-Based Counter-Measures to Photo Attacks in Face Recognition

    Get PDF
    Identity spoofing is a contender for high-security face recognition applications. With the advent of social media and globalized search, our face images and videos are wide-spread on the internet and can be potentially used to attack biometric systems without previous user consent. Yet, research to counter these threats is just on its infancy – we lack public standard databases, protocols to measure spoofing vulnerability and baseline methods to detect these attacks. The contributions of this work to the area are three-fold: firstly we introduce a publicly available PHOTO-ATTACK database with associated protocols to measure the effectiveness of counter-measures. Based on the data available, we conduct a study on current state-of-the-art spoofing detection algorithms based on motion analysis, showing they fail under the light of these new dataset. By last, we propose a new technique of counter-measure solely based on foreground/background motion correlation using Optical Flow that outperforms all other algorithms achieving nearly perfect scoring with an equal-error rate of 1.52% on the available test data. The source code leading to the reported results is made available for the replicability of findings in this article

    Artificial Intelligence for Multimedia Signal Processing

    Get PDF
    Artificial intelligence technologies are also actively applied to broadcasting and multimedia processing technologies. A lot of research has been conducted in a wide variety of fields, such as content creation, transmission, and security, and these attempts have been made in the past two to three years to improve image, video, speech, and other data compression efficiency in areas related to MPEG media processing technology. Additionally, technologies such as media creation, processing, editing, and creating scenarios are very important areas of research in multimedia processing and engineering. This book contains a collection of some topics broadly across advanced computational intelligence algorithms and technologies for emerging multimedia signal processing as: Computer vision field, speech/sound/text processing, and content analysis/information mining

    Multimedia Retrieval

    Get PDF

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed
    corecore