53 research outputs found

    SpaceRIS: LEO Satellite Coverage Maximization in 6G Sub-THz Networks by MAPPO DRL and Whale Optimization

    Full text link
    Satellite systems face a significant challenge in effectively utilizing limited communication resources to meet the demands of ground network traffic, characterized by asymmetrical spatial distribution and time-varying characteristics. Moreover, the coverage range and signal transmission distance of low Earth orbit (LEO) satellites are restricted by notable propagation attenuation, molecular absorption, and space losses in sub-terahertz (THz) frequencies. This paper introduces a novel approach to maximize LEO satellite coverage by leveraging reconfigurable intelligent surfaces (RISs) within 6G sub-THz networks. The optimization objectives encompass enhancing the end-to-end data rate, optimizing satellite-remote user equipment (RUE) associations, data packet routing within satellite constellations, RIS phase shift, and ground base station (GBS) transmit power (i.e., active beamforming). The formulated joint optimization problem poses significant challenges owing to its time-varying environment, non-convex characteristics, and NP-hard complexity. To address these challenges, we propose a block coordinate descent (BCD) algorithm that integrates balanced K-means clustering, multi-agent proximal policy optimization (MAPPO) deep reinforcement learning (DRL), and whale optimization (WOA) techniques. The performance of the proposed approach is demonstrated through comprehensive simulation results, exhibiting its superiority over existing baseline methods in the literature

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed

    one6G white paper, 6G technology overview:Second Edition, November 2022

    Get PDF
    6G is supposed to address the demands for consumption of mobile networking services in 2030 and beyond. These are characterized by a variety of diverse, often conflicting requirements, from technical ones such as extremely high data rates, unprecedented scale of communicating devices, high coverage, low communicating latency, flexibility of extension, etc., to non-technical ones such as enabling sustainable growth of the society as a whole, e.g., through energy efficiency of deployed networks. On the one hand, 6G is expected to fulfil all these individual requirements, extending thus the limits set by the previous generations of mobile networks (e.g., ten times lower latencies, or hundred times higher data rates than in 5G). On the other hand, 6G should also enable use cases characterized by combinations of these requirements never seen before, e.g., both extremely high data rates and extremely low communication latency). In this white paper, we give an overview of the key enabling technologies that constitute the pillars for the evolution towards 6G. They include: terahertz frequencies (Section 1), 6G radio access (Section 2), next generation MIMO (Section 3), integrated sensing and communication (Section 4), distributed and federated artificial intelligence (Section 5), intelligent user plane (Section 6) and flexible programmable infrastructures (Section 7). For each enabling technology, we first give the background on how and why the technology is relevant to 6G, backed up by a number of relevant use cases. After that, we describe the technology in detail, outline the key problems and difficulties, and give a comprehensive overview of the state of the art in that technology. 6G is, however, not limited to these seven technologies. They merely present our current understanding of the technological environment in which 6G is being born. Future versions of this white paper may include other relevant technologies too, as well as discuss how these technologies can be glued together in a coherent system

    When Internet of Things meets Metaverse: Convergence of Physical and Cyber Worlds

    Get PDF
    In recent years, the Internet of Things (IoT) is studied in the context of the Metaverse to provide users immersive cyber-virtual experiences in mixed reality environments. This survey introduces six typical IoT applications in the Metaverse, including collaborative healthcare, education, smart city, entertainment, real estate, and socialization. In the IoT-inspired Metaverse, we also comprehensively survey four pillar technologies that enable augmented reality (AR) and virtual reality (VR), namely, responsible artificial intelligence (AI), high-speed data communications, cost-effective mobile edge computing (MEC), and digital twins. According to the physical-world demands, we outline the current industrial efforts and seven key requirements for building the IoT-inspired Metaverse: immersion, variety, economy, civility, interactivity, authenticity, and independence. In addition, this survey describes the open issues in the IoT-inspired Metaverse, which need to be addressed to eventually achieve the convergence of physical and cyber worlds.info:eu-repo/semantics/publishedVersio

    Ondas milimétricas e MIMO massivo para otimização da capacidade e cobertura de redes heterogeneas de 5G

    Get PDF
    Today's Long Term Evolution Advanced (LTE-A) networks cannot support the exponential growth in mobile traffic forecast for the next decade. By 2020, according to Ericsson, 6 billion mobile subscribers worldwide are projected to generate 46 exabytes of mobile data traffic monthly from 24 billion connected devices, smartphones and short-range Internet of Things (IoT) devices being the key prosumers. In response, 5G networks are foreseen to markedly outperform legacy 4G systems. Triggered by the International Telecommunication Union (ITU) under the IMT-2020 network initiative, 5G will support three broad categories of use cases: enhanced mobile broadband (eMBB) for multi-Gbps data rate applications; ultra-reliable and low latency communications (URLLC) for critical scenarios; and massive machine type communications (mMTC) for massive connectivity. Among the several technology enablers being explored for 5G, millimeter-wave (mmWave) communication, massive MIMO antenna arrays and ultra-dense small cell networks (UDNs) feature as the dominant technologies. These technologies in synergy are anticipated to provide the 1000_ capacity increase for 5G networks (relative to 4G) through the combined impact of large additional bandwidth, spectral efficiency (SE) enhancement and high frequency reuse, respectively. However, although these technologies can pave the way towards gigabit wireless, there are still several challenges to solve in terms of how we can fully harness the available bandwidth efficiently through appropriate beamforming and channel modeling approaches. In this thesis, we investigate the system performance enhancements realizable with mmWave massive MIMO in 5G UDN and cellular infrastructure-to-everything (C-I2X) application scenarios involving pedestrian and vehicular users. As a critical component of the system-level simulation approach adopted in this thesis, we implemented 3D channel models for the accurate characterization of the wireless channels in these scenarios and for realistic performance evaluation. To address the hardware cost, complexity and power consumption of the massive MIMO architectures, we propose a novel generalized framework for hybrid beamforming (HBF) array structures. The generalized model reveals the opportunities that can be harnessed with the overlapped subarray structures for a balanced trade-o_ between SE and energy efficiently (EE) of 5G networks. The key results in this investigation show that mmWave massive MIMO can deliver multi-Gbps rates for 5G whilst maintaining energy-efficient operation of the network.As redes LTE-A atuais não são capazes de suportar o crescimento exponencial de tráfego que está previsto para a próxima década. De acordo com a previsão da Ericsson, espera-se que em 2020, a nível global, 6 mil milhões de subscritores venham a gerar mensalmente 46 exa bytes de tráfego de dados a partir de 24 mil milhões de dispositivos ligados à rede móvel, sendo os telefones inteligentes e dispositivos IoT de curto alcance os principais responsáveis por tal nível de tráfego. Em resposta a esta exigência, espera-se que as redes de 5a geração (5G) tenham um desempenho substancialmente superior às redes de 4a geração (4G) atuais. Desencadeado pelo UIT (União Internacional das Telecomunicações) no âmbito da iniciativa IMT-2020, o 5G irá suportar três grandes tipos de utilizações: banda larga móvel capaz de suportar aplicações com débitos na ordem de vários Gbps; comunicações de baixa latência e alta fiabilidade indispensáveis em cenários de emergência; comunicações massivas máquina-a-máquina para conectividade generalizada. Entre as várias tecnologias capacitadoras que estão a ser exploradas pelo 5G, as comunicações através de ondas milimétricas, os agregados MIMO massivo e as redes celulares ultradensas (RUD) apresentam-se como sendo as tecnologias fundamentais. Antecipa-se que o conjunto destas tecnologias venha a fornecer às redes 5G um aumento de capacidade de 1000x através da utilização de maiores larguras de banda, melhoria da eficiência espectral, e elevada reutilização de frequências respetivamente. Embora estas tecnologias possam abrir caminho para as redes sem fios com débitos na ordem dos gigabits, existem ainda vários desafios que têm que ser resolvidos para que seja possível aproveitar totalmente a largura de banda disponível de maneira eficiente utilizando abordagens de formatação de feixe e de modelação de canal adequadas. Nesta tese investigamos a melhoria de desempenho do sistema conseguida através da utilização de ondas milimétricas e agregados MIMO massivo em cenários de redes celulares ultradensas de 5a geração e em cenários 'infraestrutura celular-para-qualquer coisa' (do inglês: cellular infrastructure-to-everything) envolvendo utilizadores pedestres e veiculares. Como um componente fundamental das simulações de sistema utilizadas nesta tese é o canal de propagação, implementamos modelos de canal tridimensional (3D) para caracterizar de forma precisa o canal de propagação nestes cenários e assim conseguir uma avaliação de desempenho mais condizente com a realidade. Para resolver os problemas associados ao custo do equipamento, complexidade e consumo de energia das arquiteturas MIMO massivo, propomos um modelo inovador de agregados com formatação de feixe híbrida. Este modelo genérico revela as oportunidades que podem ser aproveitadas através da sobreposição de sub-agregados no sentido de obter um compromisso equilibrado entre eficiência espectral (ES) e eficiência energética (EE) nas redes 5G. Os principais resultados desta investigação mostram que a utilização conjunta de ondas milimétricas e de agregados MIMO massivo possibilita a obtenção, em simultâneo, de taxas de transmissão na ordem de vários Gbps e a operação de rede de forma energeticamente eficiente.Programa Doutoral em Telecomunicaçõe

    European H2020 Project WORTECS Wireless Mixed Reality Prototyping

    Get PDF
    This paper presents European collaborative project WORTECS objectives and reports on the development of several radio and optical wireless prototypes and a demonstrator targeting mixed reality (MR) application. The aim is to achieve a net throughput of up to Tbps in an indoor heterogeneous network for the MR use case, which seems to be a high throughput "killer application" beyond 5G. A special routing device is associated with the demonstrator to select the most suitable wireless access technology. Post introduction to the project, an overview of the demonstrator is presented with details of the current progress of the prototypes

    A Tutorial on Extremely Large-Scale MIMO for 6G: Fundamentals, Signal Processing, and Applications

    Full text link
    Extremely large-scale multiple-input-multiple-output (XL-MIMO), which offers vast spatial degrees of freedom, has emerged as a potentially pivotal enabling technology for the sixth generation (6G) of wireless mobile networks. With its growing significance, both opportunities and challenges are concurrently manifesting. This paper presents a comprehensive survey of research on XL-MIMO wireless systems. In particular, we introduce four XL-MIMO hardware architectures: uniform linear array (ULA)-based XL-MIMO, uniform planar array (UPA)-based XL-MIMO utilizing either patch antennas or point antennas, and continuous aperture (CAP)-based XL-MIMO. We comprehensively analyze and discuss their characteristics and interrelationships. Following this, we examine exact and approximate near-field channel models for XL-MIMO. Given the distinct electromagnetic properties of near-field communications, we present a range of channel models to demonstrate the benefits of XL-MIMO. We further motivate and discuss low-complexity signal processing schemes to promote the practical implementation of XL-MIMO. Furthermore, we explore the interplay between XL-MIMO and other emergent 6G technologies. Finally, we outline several compelling research directions for future XL-MIMO wireless communication systems.Comment: 38 pages, 10 figure

    Open Platforms for Connected Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore