85 research outputs found

    Characterization of the Autonomic Nervous System Response in Hyperbaric Environments.

    Get PDF
    Esta tesis se centra en el estudio de la respuesta del Sistema Nervioso Autónomo (ANS) en entornos hiperbáricos. Los entornos hiperbáricos son aquellos escenarios en los cuales la presión atmosférica aumenta y ese aumento en la presión produce cambios en el sistema cardio-respiratorio del sujeto para mantener la homeostasis.Estos cambios se ven reflejados en el ANS, cuya respuesta puede ser medida de manera no invasiva a través de la Variabilidad del Ritmo Cardiaco (HRV), extraída del electrocardiograma (ECG), o a través de la Variabilidad del Ritmo del Pulso (PRV), extraída de la señal de pulso pletismográfico (PPG). La descripción de los entornos hiperbáricos, de la actividad del ANS, de la relación entre ellos y de cómo la respuesta del ANS puede ser medida a través de las señales ECG y PPG, puede encontrarse en el Capítulo 1.En el Capítulo 2, para corroborar si la señal PPG proporciona la misma información en términos de respuesta del ANS que la señal ECG, ambas señales fueron registradas en sujetos en el interior de una cámara hiperbárica, con la presión atmosférica aumentando desde 1 atm a 3 y 5 atm y luego volviendo a 3 y 1 atm. La correlación y el análisis estadístico entre los parámetros en el dominio temporal y frecuencial extraídos de ambas señales demuestran que la PRV puede ser considerada una medida sustituta de la HRV para los sujetos en el interior de la cámara hiperbárica. Esto hace de la PPG una señal a ser considerada en los entornos hiperbáricos, dado que su sensor es más barato y fácil de colocar que los electrodos del ECG (especialmente debajo del agua), y además la PPG puede estimar otros parámetros, como la saturación de oxígeno, que no se pueden estimar con el ECG. También se ha realizado una caracterización de cómo el ANS reacciona ante los cambios de presión y ante el tiempo pasado en el entorno hiperbárico mediante los parámetros extraídos del ECG y la PPG, aumentando aquellos relacionados con el sistema parasimpático cuando la presión es alta y disminuyendo los parámetros relacionados con el sistema simpático conforme más tiempo se pasa dentro de la cámara.La respiración juega un papel importante en los entornos hiperbáricos por lo que se debe incluir la información respiratoria en el análisis del HRV/PRV, dado que se ha demostrado que los cambios en el patrón respiratorio pueden alterar la interpretación de la respuesta del ANS. Por lo tanto, una vez que se ha probado que la señal PPG debe ser tenida en cuenta en los entornos hiperbáricos, en el Capítulo 3 se ha realizado un estudio sobre la estimación de la frecuencia respiratoria colocando el sensor de la PPG en distintas localizaciones. Para hacer esto, se ha registrado la señal respiratoria junto con la señal PPG en el dedo y en la frente en 35 sujetos mientras respiraban espontáneamente y de forma controlada a un ritmo constante, desde 0,1 Hz a 0,6 Hz en pasos de 0,1 Hz. Cuatro señales respiratorias derivadas dela PPG (PDR) fueron extraídas de cada una de las señales PPG registradas. Éstas son: la variabilidad del ritmo del pulso (PRV), la variabilidad de la anchura del pulso (PWV), la variabilidad de la amplitud del pulso (PAV) y la variabilidad de la intensidad inducida de la respiración (RIIV). La frecuencia respiratoria fue estimada para cada una de las 4 señales PDR en ambas localizaciones del sensor PPG. Los resultados sugieren que: i) la estimación de la frecuencia respiratoria es mejor en frecuencias bajas (por debajo de 0,4 Hz); ii) las señales registradas en el dedo son mejores para la estimación que las registradas en la frente; iii) es mejor no incluir la señal RIIV para estimar la frecuencia respiratoria.Siguiendo con la señal PPG, no sólo la PRV contiene información sobre la respuesta del ANS. También la morfología de la PPG puede proporcionar una gran cantidad de información sobre el estado vascular o sobre la distensibilidad arterial, dado que la propagación de la presión del pulso en las arterias causa alteraciones en el volumen de la sangre y por lo tanto cambios en la forma de onda de la PPG.Esta es la razón por la que, en el Capítulo 4, se presenta un nuevo algoritmo para descomponer el pulso de la PPG en dos ondas relacionadas con los picos sistólico y diastólico. La primera onda es obtenida concatenando la pendiente de subida del pulso, desde el principio hasta el primer máximo, con ella misma girada horizontalmente. La segunda onda se modela como una curva lognormal, ajustando su máximo al pico diastólico. De estas dos ondas, se extraen la amplitud, el instante temporal, la anchura, el _área y algunos ratios. Este método se aplica en el conjunto de datos de la cámara hiperbárica para identificar alteraciones en la morfología del pulso PPG debido a la exposición de los sujetos a diferentes presiones atmosféricas.Los resultados del instante temporal y la anchura de la onda relacionada con el pico sistólico apuntan a una vasoconstricción cuando aumenta la presión, probablemente debida a una activación del sistema simpático sobre los vasos sanguíneos. Los resultados del instante temporal y de la anchura de la onda relacionada con el pico diastólico reflejan esta vasoconstricción y también una dependencia con el intervalo entre los pulsos. Por lo tanto, esta metodología permite extraer una gran cantidad de parámetros relacionados con la morfología de la PPG que se ven afectados por los cambios de presión en los entornos hiperbáricos.En los Capítulos 2 y 4, la respuesta del ANS se ha estudiado dentro de una cámara hiperbárica, donde la presión varía. Sin embargo, hay muchas variables que pueden afectar la respuesta cardiovascular del cuerpo durante el buceo, como son la posición del cuerpo del buceador, la actividad física, la temperatura del agua, respirar por el regulador de presión, y algunas más. Por esta razón, en el Capítulo 5 se estudia la respuesta del ANS en tres entornos hiperbáricos distintos: dentro de la cámara hiperbárica, donde sólo la presión varió; durante una actividad de buceo controlado en el mar, donde la presión cambió, pero los efectos de otras variables se minimizaron lo máximo posible; y durante una actividad de buceo no controlado en un pantano, donde más factores cambiaron entre las etapas basal y de inmersión.Se realiza una comparación de los parámetros extraídos de la HRV entre dos etapas (basal e inmersión) en cada conjunto de datos para estudiar como estos factores relacionados con la actividad de buceo afectan a la respuesta del ANS. Para hacer esta comparación, en lugar de los parámetros frecuenciales clásicos, los métodos Principal Dynamic Mode (PDM) y Orthogonal Subspace Projection (OSP) se usan para tener en cuenta las interacciones lineales y no lineales y para tratar con la componente respiratoria que puede afectar a la respuesta del ANS, respectivamente.Los resultados del método OSP indican que la mayoría de la variación de la HRVno puede ser descrita por los cambios en la respiración, por lo que los cambios en la respuesta del ANS pueden aparecer por otros factores. Los parámetros temporales reflejan la activación vagal en la cámara hiperbárica y en el buceo controlado debido al efecto de la presión. En el buceo no controlado, sin embargo, la actividad simpática parece ser la dominante, debido a los efectos de otros factores como la actividad física, el entorno estimulante y el hecho de respirar a través del regulador durante la inmersión. Como resumen, se ha realizado una descripción detallada de los cambios en todos los posibles factores que pueden afectar a la respuesta del ANS entre las etapas basal y de inmersión en los distintos entornos hiperbáricos para una mejor explicación de los resultados.This dissertation focuses on the study of the Autonomic Nervous System (ANS) response in hyperbaric environments. Hyperbaric environments are those scenarios in which atmospheric pressure increases and this increase in pressure produces changes in the cardio-respiratory system of the subject to maintain the homeostasis. These changes are reflected in the ANS, whose response can be measured in a non-invasive way with the Heart Rate Variability (HRV), extracted from the electrocardiogram (ECG) or with the Pulse Rate Variability (PRV), extracted from the photoplethysmogram (PPG). The description of the hyperbaric environments, the ANS activity, the relationship between them and how the ANS response can be measured through ECG and PPG signals can be found in Chapter 1. In Chapter 2, to corroborate if PPG signal provides the same information in terms of ANS response than ECG signal, both signals were recorded for subjects inside a hyperbaric chamber when the atmospheric pressure varied from 1 atm to 3 atm and 5 atm and the coming back to 3 and 1 atm. The correlation and statistical analysis between time and frequency domain parameters extracted from both signals demonstrates that PRV can be considered as a surrogate measurement of HRV inside a hyperbaric chamber. This makes PPG a signal to be considered in hyperbaric environments, since its sensor is cheaper and easier to place than ECG electrodes (especially under the water), and PPG can estimate some parameters, as the oxygen saturation, than ECG cannot. Also a characterization of how the ANS reacts to pressure changes and the time spent in the hyperbaric environment is done with ECG and PPG parameters, increasing those related with the parasympathetic system when the pressure is high and decreasing the heart rate and the parameters related with the sympathetic system when more time is spent inside the chamber. Respiration plays an important role in hyperbaric environments, so it is important to include respiratory information in the HRV/PRV analysis, since it has been shown that changes in the respiratory pattern could alter the interpretation of the ANS response. Therefore, once that PPG signal has been proved as an interesting signal to consider in hyperbaric environments, in Chapter 3 a study about the respiratory rate estimation from different locations of the PPG sensor is performed. To do that, the respiratory signal together with finger and forehead PPG were recorded from 35 subjects while breathing spontaneously, and during controlled respiration experiments at a constant rate from 0.1 Hz to 0.6 Hz, in 0.1 Hz steps. Four PPG derived respiratory (PDR) signals were extracted from each one of the recorded PPG signals: pulse rate variability (PRV), pulse width variability (PWV), pulse amplitude variability (PAV) and the respiratory-induced intensity variability (RIIV). Respiratory rate was estimated from each one of the 4 PDR signals for both PPG sensor locations. Results suggest that: i) respiratory rate estimation is better at lower rates (0.4 Hz and below); ii) the signals recorded at the finger are better than those at the forehead to estimate respiratory rate; iii) it is better not to include RIIV signal to estimate the respiratory rate. Following with the PPG signal, not only PRV contains information about the ANS response. Also, PPG morphology can provide a great amount of information about vascular assessment or arterial compliance, since pulse pressure propagation in arteries causes alterations in blood volume and therefore changes in the PPG pulse shape. That is the reason why, in Chapter 4, a new algorithm to decompose the PPG pulse into two waves related with the systolic and the diastolic peaks is presented. The first wave is obtained concatenating the up-slope from the beginning to the first maximum with itself flipped horizontally. The second wave is modelled by a lognormal curve, adjusting its maximum to the diastolic peak. From these two waves, the amplitude, the time instant, the width, the area and some ratios are extracted. This method is applied in a hyperbaric chamber dataset to identify alterations in the morphology of the PPG pulse due to the exposure of the subjects to different pressures. Results of the time and width of the wave related with the systolic peak point out to a vasoconstriction when the pressure increases, probably due to an activation of the sympathetic system on the blood vessels. Results of the time and width of the wave related with the diastolic peak reflect the vasoconstriction but also a dependency with the pulse-to-pulse interval. Therefore this methodology allows to extract a great set of parameters related with the PPG morphology that are affected by the change of pressure in hyperbaric environments. In Chapters 2 and 4, the ANS response is studied inside a hyperbaric chamber, where the pressure varies. However, there are many variables that could affect the body's cardiovascular response during diving, such as diver body position, physical activity, water temperature, breathing with a scuba mouthpieces and more. This is the reason why in Chapter 5 the ANS response is studied in three different hyperbaric environments: inside a hyperbaric chamber, where only the pressure varied; during a controlled dive in the sea, where the pressure changed but the effects of other factors were minimized; and during an uncontrolled dive in a reservoir, where more factors differed from baseline to immersion stage. A comparison of the HRV features between the two stages (baseline and immersion) in each dataset is carried out to study how these factors related to scuba diving activity affect the ANS response. To do this comparison, instead of the classic frequency methods, the Principal Dynamic Mode (PDM) and the Orthogonal Subspace Projection (OSP) methods are used to account for linear and non-linear interactions and to deal with the respiratory component that could affect the ANS response, respectively. OSP results indicate that most of the variation in the heart rate variability cannot be described by changes in the respiration, so changes in ANS response can be assigned to other factors. Time domain parameters reflect vagal activation in the hyperbaric chamber and in the controlled dive because of the effect of pressure. In the uncontrolled dive, sympathetic activity seems to be dominant, due to the effects of other factors such as physical activity, the challenging environment, and the influence of breathing through the scuba mask during immersion. In summary, a careful description of the changes in all the possible factors that could affect the ANS response between baseline and immersion stages in hyperbaric environments is performed for better explanation of the results.<br /

    Autonomic nervous system biomarkers from multi-modal and model-based signal processing in mental health and illness

    Get PDF
    Esta tesis se centra en técnicas de procesado multimodal y basado en modelos de señales para derivar parámetros fisiológicos, es decir, biomarcadores, relacionados con el sistema nervioso autónomo (ANS). El desarrollo de nuevos métodos para derivar biomarcadores de ANS no invasivos en la salud y la enfermedad mental ofrece la posibilidad de mejorar la evaluación del estrés y la monitorización de la depresión. Para este fin, el presente documento se estructura en tres partes principales. En la Parte I, se proporciona unaintroducción a la salud y la enfermedad mental (Cap. 1). Además, se presenta un marco teórico para investigar la etiología de los trastornos mentales y el papel del estrés en la enfermedad mental (Cap. 2). También se destaca la importancia de los biomarcadores no invasivos para la evaluación del ANS, prestando especial atención en la depresión clínica (Cap. 3, 4). En la Parte II, se proporciona el marco metodológico para derivar biomarcadores del ANS. Las técnicas de procesado de señales incluyen el análisis conjunto de la variabilidad del rítmo cardíaco (HRV) y la señal respiratoria (Cap. 6), técnicas novedosas para derivar la señal respiratoria del electrocardiograma (ECG) (Cap. 7) y un análisis robusto que se basa en modelar la forma de ondas del pulso del fotopletismograma (PPG) (Ch. 8). En la Parte III, los biomarcadores del ANS se evalúan en la quantificacióndel estrés (Cap. 9) y en la monitorización de la depresión (Ch. 10).Parte I: La salud mental no solo está relacionada con ese estado positivo de bienestar, en el que un individuo puede enfrentar a las situaciones estresantes de la vida, sino también con la ausencia de enfermedad mental. La enfermedad o trastorno mental se puede definir como un trastorno emocional, cognitivo o conductual que causa un deterioro funcional sustancial en una o más actividades importantes de la vida. Los trastornos mentales más comunes, que muchas veces coexisten, son la ansiedad y el trastorno depresivo mayor (MDD). La enfermedad mental tiene un impacto negativo en la calidad de vida, ya que se asocia con pérdidas considerables en la salud y el funcionamiento, y aumenta ignificativamente el riesgo de una persona de padecer enfermedades ardiovasculares.Un instigador común que subyace a la comorbilidad entre el MDD, la patologíacardiovascular y la ansiedad es el estrés mental. El estrés es común en nuestra vida de rítmo rapido e influye en nuestra salud mental. A corto plazo, ANS controla la respuesta cardiovascular a estímulos estresantes. La regulación de parámetros fisiológicos, como el rítmo cardíaco, la frecuencia respiratoria y la presión arterial, permite que el organismo responda a cambios repentinos en el entorno. Sin embargo, la adaptación fisiológica a un fenómeno ambiental que ocurre regularmente altera los sistemas biológicos involucrados en la respuesta al estrés. Las alteraciones neurobiológicas en el cerebro pueden alterar lafunción del ANS. La disfunción del ANS y los cambios cerebrales estructurales tienen un impacto negativo en los procesos cognitivos, emocionales y conductuales, lo que conduce al desarrollo de una enfermedad mental.Parte II: El desarrollo de métodos novedosos para derivar biomarcadores del ANS no invasivos ofrece la posibilidad de mejorar la evaluacón del estrés en individuos sanos y la disfunción del ANS en pacientes con MDD. El análisis conjunto de varias bioseñales (enfoquemultimodal) permite la cuantificación de interacciones entre sistemas biológicos asociados con ANS, mientras que el modelado de bioseãles y el análisis posterior de los parámetros del modelo (enfoque basado en modelos) permite la cuantificación robusta de cambios en mecanismos fisiológicos relacionados con el ANS. Un método novedoso, quetiene en cuenta los fenómenos de acoplo de fase y frecuencia entre la respiración y las señales de HRV para evaluar el acoplo cardiorrespiratorio no lineal cuadrático se propone en el Cap. 6.3. En el Cap. 7 se proponen nuevas técnicas paramejorar lamonitorización de la respiración. En el Cap. 8, para aumentar la robustez de algunas medidas morfológicas que reflejan cambios en el tonno arterial, se considera el modelado del pulso PPG como una onda principal superpuesta con varias ondas reflejadas.Parte III: Los biomarcadores del ANS se evalúan en la cuantificación de diferentes tipos de estrés, ya sea fisiológico o psicológico, en individuos sanos, y luego, en la monitorización de la depresión. En presencia de estrés mental (Cap. 9.1), inducido por tareas cognitivas, los sujetos sanos muestran un incremento en la frecuencia respiratoria y un mayor número de interacciones no lineales entre la respiración y la seãl de HRV. Esto podría estar asociado con una activación simpática, pero también con una respiración menos regular. En presencia de estrés hemodinámico (Cap. 9.2), inducido por un cambio postural, los sujetos sanos muestran una reducción en el acoplo cardiorrespiratoriono lineal cuadrático, que podría estar relacionado con una retracción vagal. En presencia de estrés térmico (Cap. 9.3), inducido por la exposición a emperaturas ambientales elevadas, los sujetos sanos muestran un aumento del equilibrio simpatovagal. Esto demuestra que los biomarcadores ANS son capaces de evaluar diferentes tipos de estrés y pueden explorarse más en el contexto de la monitorización de la depresión. En el Cap. 10, se evalúan las diferencias en la función del ANS entre elMDD y los sujetos sanos durante un protocolo de estrés mental, no solo con los valores brutos de los biomarcadores del ANS, sino también con los índices de reactividad autónoma, que reflejan la capacidad deun individuo para afrontar con una situación desafiante. Los resultados muestran que la depresión se asocia con un desequilibrio autonómico, que se caracteriza por una mayor actividad simpática y una reducción de la distensibilidad arterial. Los índices de reactividad autónoma cuantificados por cambios, entre etapas de estrés y de recuperación, en los sustitutos de la rigidez arterial, como la pérdida de amplitud de PPG en las ondas reflejadas, muestran el mejor rendimiento en términos de correlación con el grado de la depresión, con un coeficiente de correlación r = −0.5. La correlación negativa implicaque un mayor grado de depresión se asocia con una disminución de la reactividadautónoma. El poder discriminativo de los biomarcadores del ANS se aprecia también por su alto rendimiento diagnóstico para clasificar a los sujetos como MDD o sanos, con una precisión de 80.0%. Por lo tanto, se puede concluir que los biomarcadores del ANS pueden usarse para evaluar el estrés y que la distensibilidad arterial deteriorada podría constituir un biomarcador de salud mental útil en el seguimiento de la depresión.This dissertation is focused on multi-modal and model-based signal processing techniques for deriving physiological parameters, i.e. biomarkers, related to the autonomic nervous system (ANS). The development of novel approaches for deriving noninvasive ANS biomarkers in mental health and illness offers the possibility to improve the assessment of stress and the monitoring of depression. For this purpose, the present document is structured in three main parts. In Part I, an introduction to mental health and illness is provided (Ch. 1). Moreover, a theoretical framework for investigating the etiology of mental disorders and the role of stress in mental illness is presented (Ch. 2). The importance of noninvasive biomarkers for ANS assessment, paying particular attention in clinical depression, is also highlighted (Ch. 3, 4). In Part II, themethodological framework for deriving ANS biomarkers is provided. Signal processing techniques include the joint analysis of heart rate variability (HRV) and respiratory signals (Ch. 6), novel techniques for deriving the respiratory signal from electrocardiogram (ECG) (Ch. 7), and a robust photoplethysmogram(PPG)waveform analysis based on amodel-based approach (Ch. 8). In Part III, ANS biomarkers are evaluated in stress assessment (Ch. 9) and in the monitoring of depression (Ch. 10). Part I:Mental health is not only related to that positive state ofwell-being, inwhich an individual can cope with the normal stresses of life, but also to the absence of mental illness. Mental illness or disorder can be defined as an emotional, cognitive, or behavioural disturbance that causes substantial functional impairment in one or more major life activities. The most common mental disorders, which are often co-occurring, are anxiety and major depressive disorder (MDD). Mental illness has a negative impact on the quality of life, since it is associated with considerable losses in health and functioning, and increases significantly a person’s risk for cardiovascular diseases. A common instigator underlying the co-morbidity between MDD, cardiovascular pathology, and anxiety is mental stress. Stress is common in our fast-paced society and strongly influences our mental health. In the short term, ANS controls the cardiovascular response to stressful stimuli. Regulation of physiological parameters, such as heart rate, respiratory rate, and blood pressure, allows the organism to respond to sudden changes in the environment. However, physiological adaptation to a regularly occurring environmental phenomenon alters biological systems involved in stress response. Neurobiological alterations in the brain can disrupt the function of the ANS. ANS dysfunction and structural brain changes have a negative impact on cognitive, emotional, and behavioral processes, thereby leading to development of mental illness. Part II: The development of novel approaches for deriving noninvasive ANS biomarkers offers the possibility to improve the assessment of stress in healthy individuals and ANS dysfunction in MDD patients. Joint analysis of various biosignals (multi-modal approach) allows for the quantification of interactions among biological systems associated with ANS, while the modeling of biosignals and subsequent analysis of the model’s parameters (model-based approach) allows for the robust quantification of changes in physiological mechanisms related to the ANS. A novel method, which takes into account both phase and frequency locking phenomena between respiration and HRV signals, for assessing quadratic nonlinear cardiorespiratory coupling is proposed in Ch. 6.3. Novel techniques for improving the monitoring of respiration are proposed in Ch. 7. In Ch. 8, to increase the robustness for some morphological measurements reflecting arterial tone changes, the modeling of the PPG pulse as amain wave superposed with several reflected waves is considered. Part III: ANS biomarkers are evaluated in the assessment of different types of stress, either physiological or psychological, in healthy individuals, and then, in the monitoring of depression. In the presence of mental stress (Ch. 9.1), induced by cognitive tasks, healthy subjects show an increment in the respiratory rate and higher number of nonlinear interactions between respiration and HRV signal, which might be associated with a sympathetic activation, but also with a less regular breathing. In the presence of hemodynamic stress (Ch. 9.2), induced by a postural change, healthy subjects show a reduction in strength of the quadratic nonlinear cardiorespiratory coupling, whichmight be related to a vagal withdrawal. In the presence of heat stress (Ch. 9.3), induced by exposure to elevated environmental temperatures, healthy subjects show an increased sympathovagal balance. This demonstrates that ANS biomarkers are able to assess different types of stress and they can be further explored in the context of depression monitoring. In Ch. 10, differences in ANS function between MDD and healthy subjects during a mental stress protocol are assessed, not only with the raw values of ANS biomarkers but also with autonomic reactivity indices, which reflect the ability of an individual to copewith a challenging situation. Results show that depression is associated with autonomic imbalance, characterized by increased sympathetic activity and reduced arterial compliance. Autonomic reactivity indices quantified by changes, from stress to recovery, in arterial stiffness surrogates, such as the PPG amplitude loss in wave reflections, show the best performance in terms of correlation with depression severity, yielding to correlation coefficient r = −0.5. The negative correlation implies that a higher degree of depression is associated with a decreased autonomic reactivity. The discriminative power of ANS biomarkers is supported by their high diagnostic performance for classifying subjects as having MDD or not, yielding to accuracy of 80.0%. Therefore, it can be concluded that ANS biomarkers can be used for assessing stress and that impaired arterial compliance might constitute a biomarker of mental health useful in the monitoring of depression.<br /

    Noncontact imaging photoplethysmography to effectively access pulse rate variability

    Get PDF
    Noncontact imaging photoplethysmography (PPG) can provide physiological assessment at various anatomical locations with no discomfort to the patient. However, most previous imaging PPG (iPPG) systems have been limited by a low sample frequency, which restricts their use clinically, for instance, in the assessment of pulse rate variability (PRV). In the present study, plethysmographic signals are remotely captured via an iPPG system at a rate of 200 fps. The physiological parameters (i.e., heart and respiration rate and PRV) derived from the iPPG datasets yield statistically comparable results to those acquired using a contact PPG sensor, the gold standard. More importantly, we present evidence that the negative influence of initial low sample frequency could be compensated via interpolation to improve the time domain resolution. We thereby provide further strong support for the low-cost webcam-based iPPG technique and, importantly, open up a new avenue for effective noncontact assessment of multiple physiological parameters, with potential applications in the evaluation of cardiac autonomic activity and remote sensing of vital physiological signs

    Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis

    Get PDF
    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis

    Monitoring and management of mother and fetus at risk

    Get PDF

    Monitoring and management of mother and fetus at risk

    Get PDF

    Evaluation of Meditation Practice Using a Physiological Computing Mobile Application

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas) Universidade de Lisboa, Faculdade de Ciências, 2021Meditation research has been a topic of increasing interest over the past decades. However, scientific research in this area is experiencing several drawbacks, such as the troublesome definition of meditation, adequate study designs and variable outcomes. In the present study, the physiological changes occurring during meditation practice were evaluated by means of a headband capable of acquiring electroencephalography (Fp1 and Fp2 locations) and photoplethysmography signals simultaneously, using a mobile application. A total of 19 participants were divided in two groups: meditators (10 participants, aged between 34–58 years, with a total experience of 1587.9 ¥ 2814.8 h) and non-meditators (9 participants, aged between 21–61 years). The meditation practices considered in this study were divided into three main categories: focused attention (4 participants), open monitoring (4 participants) and compassion (2 participants). The differences between meditators and non-meditators (control group), meditation practices and the effects of a daily practice as opposed to a regular meditation practice were evaluated. In order to do so, three periods of acquisition were considered, such as baseline, meditation and postmeditation. The main differences between groups for the electroencephalography analysis were found during each period for the relative alpha power band, for the right and left hemispheres and combination of both hemispheres of the prefrontal brain. Additionally, the meditation period in comparison to baseline mainly revealed decreases in the absolute theta, alpha and beta power, as well as a decrease in relative beta power. The control group showed decreases in the same measures but mainly on the right hemisphere. The relative delta power and theta/beta ratio showed an increase between baseline and meditation periods, which may indicate a shift in brain function for greater detachment combined with greater levels of attention for the meditator group. There were no significant differences between the meditation practices nor in the frequency of practice for the electroencephalography analysis. The photoplethysmography analysis revealed lower RR-intervals during each period as well as lower breathing rate during baseline period for the meditator group. The average and maximum heart rate were significantly higher for meditator group. Additionally, the control group showed lower standard deviation of the heart rateand low frequency power during baseline and post-meditation periods in comparison to the meditators.The meditation period mainly revealed increases in the frequency domain measures, for both groups. The focused attention meditation practices revealed greater sympathetic activation in comparison to the open monitoring practices. In summary, meditation practice revealed significant differences between the meditator and control groups, both in brain activity and in cardiac activity, which may imply that its practice over time results in altered traits. Additionally, this study showed that meditation practice alters the physiological signals of electroencephalography and photoplethysmography according to task, i.e. relaxation or meditation, which allows to identify its state effects
    corecore