97 research outputs found

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    Hyperspectral Image Classification

    Get PDF
    Hyperspectral image (HSI) classification is a phenomenal mechanism to analyze diversified land cover in remotely sensed hyperspectral images. In the field of remote sensing, HSI classification has been an established research topic, and herein, the inherent primary challenges are (i) curse of dimensionality and (ii) insufficient samples pool during training. Given a set of observations with known class labels, the basic goal of hyperspectral image classification is to assign a class label to each pixel. This chapter discusses the recent progress in the classification of HS images in the aspects of Kernel-based methods, supervised and unsupervised classifiers, classification based on sparse representation, and spectral-spatial classification. Further, the classification methods based on machine learning and the future directions are discussed

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    Memory Models for Incremental Learning Architectures

    Get PDF
    Losing V. Memory Models for Incremental Learning Architectures. Bielefeld: Universität Bielefeld; 2019.Technological advancement leads constantly to an exponential growth of generated data in basically every domain, drastically increasing the burden of data storage and maintenance. Most of the data is instantaneously extracted and available in form of endless streams that contain the most current information. Machine learning methods constitute one fundamental way of processing such data in an automatic way, as they generate models that capture the processes behind the data. They are omnipresent in our everyday life as their applications include personalized advertising, recommendations, fraud detection, surveillance, credit ratings, high-speed trading and smart-home devices. Thereby, batch learning, denoting the offline construction of a static model based on large datasets, is the predominant scheme. However, it is increasingly unfit to deal with the accumulating masses of data in given time and in particularly its static nature cannot handle changing patterns. In contrast, incremental learning constitutes one attractive alternative that is a very natural fit for the current demands. Its dynamic adaptation allows continuous processing of data streams, without the necessity to store all data from the past, and results in always up-to-date models, even able to perform in non-stationary environments. In this thesis, we will tackle crucial research questions in the domain of incremental learning by contributing new algorithms or significantly extending existing ones. Thereby, we consider stationary and non-stationary environments and present multiple real-world applications that showcase merits of the methods as well as their versatility. The main contributions are the following: One novel approach that addresses the question of how to extend a model for prototype-based algorithms based on cost minimization. We propose local split-time prediction for incremental decision trees to mitigate the trade-off between adaptation speed versus model complexity and run time. An extensive survey of the strengths and weaknesses of state-of-the-art methods that provides guidance for choosing a suitable algorithm for a given task. One new approach to extract valuable information about the type of change in a dataset. We contribute a biologically inspired architecture, able to handle different types of drift using dedicated memories that are kept consistent. Application of the novel methods within three diverse real-world tasks, highlighting their robustness and versatility. Investigation of personalized online models in the context of two real-world applications
    • …
    corecore