38 research outputs found

    Activity Report: Automatic Control 1997

    Get PDF

    Practicing Sovereignty: Digital Involvement in Times of Crises

    Get PDF
    Digital sovereignty has become a hotly debated concept. The current convergence of multiple crises adds fuel to this debate, as it contextualizes the concept in a foundational discussion of democratic principles, civil rights, and national identities: is (technological) self-determination an option for every individual to cope with the digital sphere effectively? Can disruptive events provide chances to rethink our ideas of society - including the design of the objects and processes which constitute our techno-social realities? The positions assembled in this volume analyze opportunities for participation and policy-making, and describe alternative technological practices before and after the pandemic

    Practicing Sovereignty

    Get PDF
    Digital sovereignty has become a hotly debated concept. The current convergence of multiple crises adds fuel to this debate, as it contextualizes the concept in a foundational discussion of democratic principles, civil rights, and national identities: is (technological) self-determination an option for every individual to cope with the digital sphere effectively? Can disruptive events provide chances to rethink our ideas of society - including the design of the objects and processes which constitute our techno-social realities? The positions assembled in this volume analyze opportunities for participation and policy-making, and describe alternative technological practices before and after the pandemic

    Employing multi-modal sensors for personalised smart home health monitoring.

    Get PDF
    Smart home systems are employed worldwide for a variety of automated monitoring tasks. FITsense is a system that performs personalised smart home health monitoring using sensor data. In this thesis, we expand upon this system by identifying the limits of health monitoring using simple IoT sensors, and establishing deployable solutions for new rich sensing technologies. The FITsense system collects data from FitHomes and generates behavioural insights for health monitoring. To allow the system to expand to arbitrary home layouts, sensing applications must be delivered while relying on sparse "ground truth" data. An enhanced data representation was tested for improving activity recognition performance by encoding observed temporal dependencies. Experiments showed an improvement in activity recognition accuracy over baseline data representations with standard classifiers. Channel State Information (CSI) was chosen as our rich sensing technology for its ambient nature and potential deployability. We developed a novel Python toolkit, called CSIKit, to handle various CSI software implementations, including automatic detection for off-the-shelf CSI formats. Previous researchers proposed a method to address AGC effects on COTS CSI hardware, which we tested and found to improve correlation with a baseline without AGC. This implementation was included in the public release of CSIKit. Two sensing applications were delivered using CSIKit to demonstrate its functionality. Our statistical approach to motion detection with CSI data showed a 32% increase in accuracy over an infrared sensor-based solution using data from 2 unique environments. We also demonstrated the first CSI activity recognition application on a Raspberry Pi 4, which achieved an accuracy of 92% with 11 activity classes. An application was then trained to support movement detection using data from all COTS CSI hardware. This was combined with our signal divider implementation to compare CSI wireless and sensing performance characteristics. The IWL5300 exhibited the most consistent wireless performance, while the ESP32 was found to produce viable CSI data for sensing applications. This establishes the ESP32 as a low-cost high-value hardware solution for CSI sensing. To complete this work, an in-home study was performed using real-world sensor data. An ESP32-based CSI sensor was developed to be integrated into our IoT network. This sensor was tested in a FitHome environment to identify how the data from our existing simple sensors could aid sensor development. We performed an experiment to demonstrate that annotations for CSI data could be gathered with infrared motion sensors. Results showed that our new CSI sensor collected real-world data of similar utility to that collected manually in a controlled environment

    Occupational health and safety issues in human-robot collaboration: State of the art and open challenges

    Get PDF
    Human-Robot Collaboration (HRC) refers to the interaction of workers and robots in a shared workspace. Owing to the integration of the industrial automation strengths with the inimitable cognitive capabilities of humans, HRC is paramount to move towards advanced and sustainable production systems. Although the overall safety of collaborative robotics has increased over time, further research efforts are needed to allow humans to operate alongside robots, with awareness and trust. Numerous safety concerns are open, and either new or enhanced technical, procedural and organizational measures have to be investigated to design and implement inherently safe and ergonomic automation solutions, aligning the systems performance and the human safety. Therefore, a bibliometric analysis and a literature review are carried out in the present paper to provide a comprehensive overview of Occupational Health and Safety (OHS) issues in HRC. As a result, the most researched topics and application areas, and the possible future lines of research are identified. Reviewed articles stress the central role played by humans during collaboration, underlining the need to integrate the human factor in the hazard analysis and risk assessment. Human-centered design and cognitive engineering principles also require further investigations to increase the worker acceptance and trust during collaboration. Deepened studies are compulsory in the healthcare sector, to investigate the social and ethical implications of HRC. Whatever the application context is, the implementation of more and more advanced technologies is fundamental to overcome the current HRC safety concerns, designing low-risk HRC systems while ensuring the system productivity

    A Reference Architecture and a Software Platform for Engineering Internet of Things Search Engines

    Get PDF
    The Internet of Things (IoT) is here. Enabled by advances in the wireless networking and the miniaturization of embedded computers, billions of physical things have been connecting to the Internet and offering their ability to sense and react to the real-world phenomena. These abilities form the content of IoT, which enable applications such as smart-city, smartbuilding, assisted living, and supply chain automation. The Internet of Things Search Engines (IoTSE) support human users and software systems to detect and retrieve IoT content for realizing the stated applications. Due to the diversity and sensitivity of IoT content, the literature has suggested that IoTSE will emerge as a large number of small instances, each of which monitors a specific IoT infrastructure and specializes in querying a particular type of IoT content. Various internal activities (i.e., components), as well as the logical and physical arrangement of those activities (i.e., architectural patterns), will overlap between IoTSE instances. The emergence of a large number of IoTSE instances, which possess overlapping operations and architecture, highlights the need for leveraging prior components and architectural patterns in engineering IoTSE instances. However, as an IoTSE reference architecture and a software infrastructure to guide and support such reuse-centric IoTSE engineering have not existed, a majority of IoTSE instances have been engineered from scratch. This thesis aims at proposing the reference architecture and the software infrastructure to support leveraging prior components and architectural patterns in engineering IoTSE instances. The key contributions of this thesis include a reference architecture that describes the constituting components and architectural patterns of an IoTSE instance, and software infrastructure that supports utilizing the reference architecture in developing reusable, composable IoTSE components and engineering IoTSE instances from those components. In order to propose the IoTSE reference architecture, we conducted a systematic and extensive survey of over one decade of IoTSE research and development effort from both an academic and an industrial perspective. We identified commonalities among diverse classes of IoTSE instances and compiled this knowledge into a reference architecture, which defines 18 components, 13 composition patterns, and 6 deployment patterns. We assessed the reference architecture by mapping it onto two IoTSE prototypes that represent the most common types of IoTSE in the literature and possess the more complicated architecture compared to other types. In order to develop the software infrastructure, we first proposed a kernel-based approach to IoTSE engineering, which was inspired by the design of modern operating systems. In this approach, IoTSE instances operate as a collection of independently developed IoTSE components that are plugged into a shared kernel. This kernel provides essential utilities to run IoTSE components and control their interactions to fulfill the functionality of an IoTSE instance. The kernel also provides templates that simplify the development of IoTSE components that are interoperable and compliant with the proposed reference architecture. In a case study, which involves engineering an IoTSE prototype, the kernel managed to reduce the amount of new source line of code to just 30%. The kernel-based approach supports engineering a majority of prominent IoTSE types detected in the literature. To enhance its support for emerging classes of IoTSE and prepare for future features in the reuse-centric IoTSE engineering, we proposed a platform-based approach to IoTSE engineering that extends the kernel-based approach. The platform-based approach revolves around an Internet of Things Search Engine Platform – ISEP – that supports developing interoperable IoTSE components, accumulating those components, and allowing search engine operators to engineer IoTSE instance from them using any valid architectural pattern defined in the reference architecture, without modifying the implementation of the components. In a case study, the platform-based approach enabled engineering complex IoTSE instances entirely from the components of simpler ones. Both the ability to engineer various IoTSE instances from a set of components and the engineering of new IoTSE instances entirely from accumulated components are unprecedented in the IoTSE literature. Future research can focus on devising mechanisms that leverage the architecture and the infrastructure proposed in this thesis to accumulate the knowledge generated in the process of engineering IoTSE instances and use it to introduce automation gradually to IoTSE engineering. Eventually, when the automation is proven to be trustworthy and reliable, machines might compose and deploy IoTSE instances in real-time to adapt to the incoming queries and the state of the computing infrastructure. By achieving this degree of automation, we will have realized a search engine for the Internet of Things.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    Sonic Interactions in Virtual Environments

    Get PDF

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments
    corecore