8 research outputs found

    Critical Programming: Toward a Philosophy of Computing

    Get PDF
    Beliefs about the relationship between human beings and computing machines and their destinies have alternated from heroic counterparts to conspirators of automated genocide, from apocalyptic extinction events to evolutionary cyborg convergences. Many fear that people are losing key intellectual and social abilities as tasks are offloaded to the everywhere of the built environment, which is developing a mind of its own. If digital technologies have contributed to forming a dumbest generation and ushering in a robotic moment, we all have a stake in addressing this collective intelligence problem. While digital humanities continue to flourish and introduce new uses for computer technologies, the basic modes of philosophical inquiry remain in the grip of print media, and default philosophies of computing prevail, or experimental ones propagate false hopes. I cast this as-is situation as the post-postmodern network dividual cyborg, recognizing that the rational enlightenment of modernism and regressive subjectivity of postmodernism now operate in an empire of extended mind cybernetics combined with techno-capitalist networks forming societies of control. Recent critical theorists identify a justificatory scheme foregrounding participation in projects, valorizing social network linkages over heroic individualism, and commending flexibility and adaptability through life long learning over stable career paths. It seems to reify one possible, contingent configuration of global capitalism as if it was the reflection of a deterministic evolution of commingled technogenesis and synaptogenesis. To counter this trend I offer a theoretical framework to focus on the phenomenology of software and code, joining social critiques with textuality and media studies, the former proposing that theory be done through practice, and the latter seeking to understand their schematism of perceptibility by taking into account engineering techniques like time axis manipulation. The social construction of technology makes additional theoretical contributions dispelling closed world, deterministic historical narratives and requiring voices be given to the engineers and technologists that best know their subject area. This theoretical slate has been recently deployed to produce rich histories of computing, networking, and software, inform the nascent disciplines of software studies and code studies, as well as guide ethnographers of software development communities. I call my syncretism of these approaches the procedural rhetoric of diachrony in synchrony, recognizing that multiple explanatory layers operating in their individual temporal and physical orders of magnitude simultaneously undergird post-postmodern network phenomena. Its touchstone is that the human-machine situation is best contemplated by doing, which as a methodology for digital humanities research I call critical programming. Philosophers of computing explore working code places by designing, coding, and executing complex software projects as an integral part of their intellectual activity, reflecting on how developing theoretical understanding necessitates iterative development of code as it does other texts, and how resolving coding dilemmas may clarify or modify provisional theories as our minds struggle to intuit the alien temporalities of machine processes

    Chiasmic Rhetoric: Alan Turing Between Bodies and Words

    Get PDF
    This Dissertation analyzes the life and writing of inventor and scientist Alan Turing in order to identify and theorize chiasmic relations between bodies and texts. Chiasmic rhetoric, as I develop throughout the Dissertation, is the dynamic processes between materials and discourses that interact to construct powerful rhetorical effect, shape bodies, and also compose new knowledges. My research here extends our knowledge of the rhetoric of science by demonstrating the ways that Alan Turing\u27s embodied experiences shape his rhetoric. Turing is an unusual figure for research on bodily rhetoric and embodied knowledge. He is often associated with disembodied knowledge and as his inventions are said to move intelligence towards greater abstraction and away from human bodies. However, this Dissertation exposes the many ways that bodies are active in shaping and producing knowledge even within Turing\u27s scientific and technical writing. I identify how, in every text that Turing produces, chiasmic interactions between bodies and texts actively compose Turing\u27s scientific knowledge and technical innovations towards digital computation and artificial intelligence. His knowledge, thus, is not composed out of abstract logic, or neutral technological advances. Rather, his knowledge and invention are composed and in through discourses and embodied experiences. Given that bodies and discourses are also composed within social and political power dynamics, then the political, social, and personal embodied experiences that compose Turing\u27s life and his embodiment also compose his texts, rhetoric, inventions, and science. Throughout the Dissertation, I develop chiasmic rhetoric as it develops in the rhetorical figure of chiasmus, as intersecting bodies and discourse, dynamic and productive, and potentially destabilizing. I conclude by proposing a pedagogy of care and disorientation that are attuned to the complex embodiment of students interacting with texts in our technical writing and composition classrooms

    Machines will think: structure and interpretation of Alan Turing’s imitation game

    Get PDF
    Can machines think? I present a study of Alan Turing’s iconic imitation game or test and its central question. Seventy years of commentary has been produced about Turing’s 1950 proposal. The now legendary “Turing test” has grown a life of its own in the tradition of analytic philosophy with at best loose ties to the historical imitation tests (1948-1952) posed by Turing. I shall examine the historical and epistemological roots of Turing’s various versions of imitation game or test and make the case that they came out from within a dialogue, in fact a scientific controversy, most notably with physicist and computer pioneer Douglas Hartree, chemist and philosopher Michael Polanyi, and neurosurgeon Geoffrey Jefferson. Placing Turing’s views in their historical, social and cultural context, I shall reclaim their scientific and philosophical value for the sake of the discussion in the years to come. My study is organized according to three main philosophical problems whose analyses are backed by a subsidiary chronology of the concept of machine intelligence in Turing’s thought (1936-1952). The first problem I will address is the identification of Turing’s specific ambition which led him to announce that machines will think. War hero and brilliant mathematician, he challenged the conventional wisdom of what machines really were or could be and prophesized a future pervaded by intelligent machines which may be seen as a dystopia just as much as a utopia. I shall examine Turing’s profile and take special interest in the way he was seen by his contenders. In the second problem, over and above the mere proposal of a test for machine intelligence, I will study Turing’s proposition “machines can think” and its implied existential hypothesis — “there exists (will exist) a thinking machine” — from a point of view of the history of the philosophy of science. Unlike traditional readings of Turing, I found that Turing held a non-obvious realist attitude towards the existence of a mechanical mindbrain which he conjectured to frame the human and whose digital replica he intended to build in the machine. Turing’s 1950 paper has been acknowledged as a complex and multi-layered text. Opposing views can be identified in the literature relative to the question on whether or not Turing proposed his imitation test as an experiment to decide for machine intelligence. I shall call this the Turing test dilemma and address it as my third and main problem. My findings suggest that Turing cannot have proposed his imitation game as something other than a thought experiment. And yet its critical and heuristic functions within the mind-machine controversy are striking
    corecore