13,638 research outputs found

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Analyzing collaborative learning processes automatically

    Get PDF
    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in

    Impact of Argument Type and Concerns in Argumentation with a Chatbot

    Get PDF
    Conversational agents, also known as chatbots, are versatile tools that have the potential of being used in dialogical argumentation. They could possibly be deployed in tasks such as persuasion for behaviour change (e.g. persuading people to eat more fruit, to take regular exercise, etc.) However, to achieve this, there is a need to develop methods for acquiring appropriate arguments and counterargument that reflect both sides of the discussion. For instance, to persuade someone to do regular exercise, the chatbot needs to know counterarguments that the user might have for not doing exercise. To address this need, we present methods for acquiring arguments and counterarguments, and importantly, meta-level information that can be useful for deciding when arguments can be used during an argumentation dialogue. We evaluate these methods in studies with participants and show how harnessing these methods in a chatbot can make it more persuasive

    Acquiring Correct Knowledge for Natural Language Generation

    Full text link
    Natural language generation (NLG) systems are computer software systems that produce texts in English and other human languages, often from non-linguistic input data. NLG systems, like most AI systems, need substantial amounts of knowledge. However, our experience in two NLG projects suggests that it is difficult to acquire correct knowledge for NLG systems; indeed, every knowledge acquisition (KA) technique we tried had significant problems. In general terms, these problems were due to the complexity, novelty, and poorly understood nature of the tasks our systems attempted, and were worsened by the fact that people write so differently. This meant in particular that corpus-based KA approaches suffered because it was impossible to assemble a sizable corpus of high-quality consistent manually written texts in our domains; and structured expert-oriented KA techniques suffered because experts disagreed and because we could not get enough information about special and unusual cases to build robust systems. We believe that such problems are likely to affect many other NLG systems as well. In the long term, we hope that new KA techniques may emerge to help NLG system builders. In the shorter term, we believe that understanding how individual KA techniques can fail, and using a mixture of different KA techniques with different strengths and weaknesses, can help developers acquire NLG knowledge that is mostly correct

    Reasoning about Action: An Argumentation - Theoretic Approach

    Full text link
    We present a uniform non-monotonic solution to the problems of reasoning about action on the basis of an argumentation-theoretic approach. Our theory is provably correct relative to a sensible minimisation policy introduced on top of a temporal propositional logic. Sophisticated problem domains can be formalised in our framework. As much attention of researchers in the field has been paid to the traditional and basic problems in reasoning about actions such as the frame, the qualification and the ramification problems, approaches to these problems within our formalisation lie at heart of the expositions presented in this paper
    corecore