1,023 research outputs found

    Comparison between five stochastic global search algorithms for optimizing thermoelectric generator designs

    Get PDF
    In this study, the best settings of five heuristics are determined for solving a mixed-integer non-linear multi-objective optimization problem. The algorithms treated in the article are: ant colony optimization, genetic algorithm, particle swarm optimization, differential evolution, and teaching-learning basic algorithm. The optimization problem consists in optimizing the design of a thermoelectric device, based on a model available in literature. Results showed that the inner settings can have different effects on the algorithm performance criteria depending on the algorithm. A formulation based on the weighted sum method is introduced for solving the multiobjective optimization problem with optimal settings. It was found that the five heuristic algorithms have comparable performances. Differential evolution generated the highest number of non-dominated solutions in comparison with the other algorithms

    Indoor Air Pollutants and the Future Perspectives for Living Space Design

    Get PDF
    This study presents an overview on the indoor air pollutants and their implications in the living space design-related strategy implementation. Not only the buildings but also the cabins of diverse traveling vehicles (busses, trains, cars, spacecrafts, submarines, etc.) are envisaged in this regard. Overall, in the smart eco-efficient built environment, such indoor spaces should ensure an adequate indoor air quality (IAQ), along with accomplishing the performance for other key components such as durability, energy saving, aesthetical architecture, etc. General aspects on indoor air quality and indoor air pollution, IAQ monitoring, and remediation strategies, as well as the main types of indoor pollutants and their effects upon human health, are highlighted

    Time-delayed autosynchronous swarm control

    Get PDF
    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function which can be set to induce a stationary swarm, a rotating swarm with uniform translation and a rotating swarm with a stationary center-of-mass. An analysis of the mean field equations shows that without a spring potential the motion of the center-of-mass is determined explicitly by a multi-valued function. For a non-zero spring potential the swarm converges to a vortex formation about a stationary center-of-mass, except at discrete bifurcation points where the center-of-mass will periodically trace an ellipse. The analytical results defining the behavior of the center-of-mass are shown to correspond with the numerical swarm simulations

    Operations Management

    Get PDF
    Global competition has caused fundamental changes in the competitive environment of the manufacturing and service industries. Firms should develop strategic objectives that, upon achievement, result in a competitive advantage in the market place. The forces of globalization on one hand and rapidly growing marketing opportunities overseas, especially in emerging economies on the other, have led to the expansion of operations on a global scale. The book aims to cover the main topics characterizing operations management including both strategic issues and practical applications. A global environmental business including both manufacturing and services is analyzed. The book contains original research and application chapters from different perspectives. It is enriched through the analyses of case studies

    Design for manufacturability : a feature-based agent-driven approach

    Get PDF

    Systems Engineering: Availability and Reliability

    Get PDF
    Current trends in Industry 4.0 are largely related to issues of reliability and availability. As a result of these trends and the complexity of engineering systems, research and development in this area needs to focus on new solutions in the integration of intelligent machines or systems, with an emphasis on changes in production processes aimed at increasing production efficiency or equipment reliability. The emergence of innovative technologies and new business models based on innovation, cooperation networks, and the enhancement of endogenous resources is assumed to be a strong contribution to the development of competitive economies all around the world. Innovation and engineering, focused on sustainability, reliability, and availability of resources, have a key role in this context. The scope of this Special Issue is closely associated to that of the ICIE’2020 conference. This conference and journal’s Special Issue is to present current innovations and engineering achievements of top world scientists and industrial practitioners in the thematic areas related to reliability and risk assessment, innovations in maintenance strategies, production process scheduling, management and maintenance or systems analysis, simulation, design and modelling

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Advanced propulsion system for hybrid vehicles

    Get PDF
    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery

    A general architecture for robotic swarms

    Get PDF
    Swarms are large groups of simplistic individuals that collectively solve disproportionately complex tasks. Individual swarm agents are limited in perception, mechanically simple, have no global knowledge and are cheap, disposable and fallible. They rely exclusively on local observations and local communications. A swarm has no centralised control. These features are typifed by eusocial insects such as ants and termites, who construct nests, forage and build complex societies comprised of primitive agents. This project created the basis of a general swarm architecture for the control of insect-like robots. The Swarm Architecture is inspired by threshold models of insect behaviour and attempts to capture the salient features of the hive in a closely defined computer program that is hardware agnostic, swarm size indifferent and intended to be applicable to a wide range of swarm tasks. This was achieved by exploiting the inherent limitations of swarm agents. Individual insects were modelled as a machine capable only of perception, locomotion and manipulation. This approximation reduced behaviour primitives to a fixed tractable number and abstracted sensor interpretation. Cooperation was achieved through stigmergy and decisions made via a behaviour threshold model. The Architecture represents an advance on previous robotic swarms in its generality - swarm control software has often been tied to one task and robot configuration. The Architecture's exclusive focus on swarms, sets it apart from existing general cooperative systems, which are not usually explicitly swarm orientated. The Architecture was implemented successfully on both simulated and real-world swarms

    On Slowing Climate Change with Ecological, Thermo-Active Building Systems

    Get PDF
    In the early days of energy conservation 1980s several countries took the need for energy efficiency seriously enough to sponsor some demonstration buildings For instance a US university design concept was built in Regina Canada in1978 The Saskatchewan Energy Conservation house 1s 4 demonstrated a new passive technology It had super-insulated and airtight walls large windows on the south facade evacuated solar pipes for domestic water heating and a heat recovery ventilator Despite of all the technology demonstrated there as Bomberg et al 2 explains the passive measures were not accepted in the Canadian marketplace because the builders modified the heating system and thereby changed the air flow pattern in the hous
    • …
    corecore