29,335 research outputs found

    Inside Dropbox: Understanding Personal Cloud Storage Services

    Get PDF
    Personal cloud storage services are gaining popularity. With a rush of providers to enter the market and an increasing of- fer of cheap storage space, it is to be expected that cloud storage will soon generate a high amount of Internet traffic. Very little is known about the architecture and the perfor- mance of such systems, and the workload they have to face. This understanding is essential for designing efficient cloud storage systems and predicting their impact on the network. This paper presents a characterization of Dropbox, the leading solution in personal cloud storage in our datasets. By means of passive measurements, we analyze data from four vantage points in Europe, collected during 42 consecu- tive days. Our contributions are threefold: Firstly, we are the first to study Dropbox, which we show to be the most widely-used cloud storage system, already accounting for a volume equivalent to around one third of the YouTube traffic at campus networks on some days. Secondly, we characterize the workload typical users in different environments gener- ate to the system, highlighting how this reflects on network traffic. Lastly, our results show possible performance bot- tlenecks caused by both the current system architecture and the storage protocol. This is exacerbated for users connected far from control and storage data-center

    Service Oriented Toolkit for Research Data Management Final Report

    Get PDF
    The Service Oriented Toolkit for Research Data Management project was co-funded by the JISC Managing Research Data Programme 2011-2013 and The University of Hertfordshire. The project focused on the realisation of practical benefits for operationalising an institutional approach to good practice in RDM. The objectives of the project were to audit current best practice, develop technology demonstrators with the assistance of leading UH research groups, and then reflect these developments back into the wider internal and external research community via a toolkit of services and guidance. The overall aim was to contribute to the efficacy and quality of research data plans, and establish and cement good data management practice in line with local and national policy

    Leveraging OpenStack and Ceph for a Controlled-Access Data Cloud

    Full text link
    While traditional HPC has and continues to satisfy most workflows, a new generation of researchers has emerged looking for sophisticated, scalable, on-demand, and self-service control of compute infrastructure in a cloud-like environment. Many also seek safe harbors to operate on or store sensitive and/or controlled-access data in a high capacity environment. To cater to these modern users, the Minnesota Supercomputing Institute designed and deployed Stratus, a locally-hosted cloud environment powered by the OpenStack platform, and backed by Ceph storage. The subscription-based service complements existing HPC systems by satisfying the following unmet needs of our users: a) on-demand availability of compute resources, b) long-running jobs (i.e., >30> 30 days), c) container-based computing with Docker, and d) adequate security controls to comply with controlled-access data requirements. This document provides an in-depth look at the design of Stratus with respect to security and compliance with the NIH's controlled-access data policy. Emphasis is placed on lessons learned while integrating OpenStack and Ceph features into a so-called "walled garden", and how those technologies influenced the security design. Many features of Stratus, including tiered secure storage with the introduction of a controlled-access data "cache", fault-tolerant live-migrations, and fully integrated two-factor authentication, depend on recent OpenStack and Ceph features.Comment: 7 pages, 5 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Towards distributed architecture for collaborative cloud services in community networks

    Get PDF
    Internet and communication technologies have lowered the costs for communities to collaborate, leading to new services like user-generated content and social computing, and through collaboration, collectively built infrastructures like community networks have also emerged. Community networks get formed when individuals and local organisations from a geographic area team up to create and run a community-owned IP network to satisfy the community’s demand for ICT, such as facilitating Internet access and providing services of local interest. The consolidation of today’s cloud technologies offers now the possibility of collectively built community clouds, building upon user-generated content and user-provided networks towards an ecosystem of cloud services. To address the limitation and enhance utility of community networks, we propose a collaborative distributed architecture for building a community cloud system that employs resources contributed by the members of the community network for provisioning infrastructure and software services. Such architecture needs to be tailored to the specific social, economic and technical characteristics of the community networks for community clouds to be successful and sustainable. By real deployments of clouds in community networks and evaluation of application performance, we show that community clouds are feasible. Our result may encourage collaborative innovative cloud-based services made possible with the resources of a community.Peer ReviewedPostprint (author’s final draft

    Managing the outsourcing of information security processes: the 'cloud' solution

    Get PDF
    Information security processes and systems are relevant for any organization and involve medium-to-high investment; however, the current economic downturn is causing a dramatic reduction in spending on Information Technology (IT). Cloud computing (i.e., externalization of one or more IT services) might be a solution for organizations keen to maintain a good level of security. In this paper we discuss whether cloud computing is a valid alternative to in-house security processes and systems drawing on four mini-case studies of higher education institutions in New England, US. Our findings show that the organization’s IT spending capacity affects the choice to move to the cloud; however, the perceived security of the cloud and the perceived in-house capacity to provide high quality IT (and security) services moderate this relationship. Moreover, other variables such as (low) quality of technical support, relatively incomplete contracts, poor defined Service License Agreements (SLA), and ambiguities over data ownership affect the choice to outsource IT (and security) using the cloud. We suggest that, while cloud computing could be a useful means of IT outsourcing, there needs to be a number of changes and improvements to how the service is currently delivered

    Flexible Yet Secure De-Duplication Service for Enterprise Data on Cloud Storage

    Get PDF
    The cloud storage services bring forth infinite storage capacity and flexible access capability to store and share large-scale content. The convenience brought forth has attracted both individual and enterprise users to outsource data service to a cloud provider. As the survey shows 56% of the usages of cloud storage applications are for data back up and up to 68% of data backup are user assets. Enterprise tenants would need to protect their data privacy before uploading them to the cloud and expect a reasonable performance while they try to reduce the operation cost in terms of cloud storage, capacity and I/Os matter as well as systems’ performance, bandwidth and data protection. Thus, enterprise tenants demand secure and economic data storage yet flexible access on their cloud data. In this paper, we propose a secure de-duplication solution for enterprise tenants to leverage the benefits of cloud storage while reducing operation cost and protecting privacy. First, the solution uses a proxy to do flexible group access control which supports secure de-duplication within a group; Second, the solution supports scalable clustering of proxies to support large-scale data access; Third, the solution can be integrated with cloud storage seamlessly. We implemented and tested our solution by integrating it with Dropbox. Secure de-duplication in a group is performed at low data transfer latency and small storage overhead as compared to de-duplication on plaintext
    • …
    corecore