11 research outputs found

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application

    Lunar Crater Identification in Digital Images

    Full text link
    It is often necessary to identify a pattern of observed craters in a single image of the lunar surface and without any prior knowledge of the camera's location. This so-called "lost-in-space" crater identification problem is common in both crater-based terrain relative navigation (TRN) and in automatic registration of scientific imagery. Past work on crater identification has largely been based on heuristic schemes, with poor performance outside of a narrowly defined operating regime (e.g., nadir pointing images, small search areas). This work provides the first mathematically rigorous treatment of the general crater identification problem. It is shown when it is (and when it is not) possible to recognize a pattern of elliptical crater rims in an image formed by perspective projection. For the cases when it is possible to recognize a pattern, descriptors are developed using invariant theory that provably capture all of the viewpoint invariant information. These descriptors may be pre-computed for known crater patterns and placed in a searchable index for fast recognition. New techniques are also developed for computing pose from crater rim observations and for evaluating crater rim correspondences. These techniques are demonstrated on both synthetic and real images

    Morphology-based landslide monitoring with an unmanned aerial vehicle

    Get PDF
    PhD ThesisLandslides represent major natural phenomena with often disastrous consequences. Monitoring landslides with time-series surface observations can help mitigate such hazards. Unmanned aerial vehicles (UAVs) employing compact digital cameras, and in conjunction with Structure-from-Motion (SfM) and modern Multi-View Stereo (MVS) image matching approaches, have become commonplace in the geoscience research community. These methods offer a relatively low-cost and flexible solution for many geomorphological applications. The SfM-MVS pipeline has expedited the generation of digital elevation models at high spatio-temporal resolution. Conventionally ground control points (GCPs) are required for co-registration. This task is often expensive and impracticable considering hazardous terrain. This research has developed a strategy for processing UAV visible wavelength imagery that can provide multi-temporal surface morphological information for landslide monitoring, in an attempt to overcome the reliance on GCPs. This morphological-based strategy applies the attribute of curvature in combination with the scale-invariant feature transform algorithm, to generate pseudo GCPs. Openness is applied to extract relatively stable regions whereby pseudo GCPs are selected. Image cross-correlation functions integrated with openness and slope are employed to track landslide motion with subsequent elevation differences and planimetric surface displacements produced. Accuracy assessment evaluates unresolved biases with the aid of benchmark datasets. This approach was tested in the UK, in two sites, first in Sandford with artificial surface change and then in an active landslide at Hollin Hill. In Sandford, the strategy detected a ±0.120 m 3D surface change from three-epoch SfM-MVS products derived from a consumer-grade UAV. For the Hollin Hill landslide six-epoch datasets spanning an eighteen-month duration period were used, providing a ± 0.221 m minimum change. Annual displacement rates of dm-level were estimated with optimal results over winter periods. Levels of accuracy and spatial resolution comparable to previous studies demonstrated the potential of the morphology-based strategy for a time-efficient and cost-effective monitoring at inaccessible areas

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    The Extraction and Use of Image Planes for Three-dimensional Metric Reconstruction

    Get PDF
    The three-dimensional (3D) metric reconstruction of a scene from two-dimensional images is a fundamental problem in Computer Vision. The major bottleneck in the process of retrieving such structure lies in the task of recovering the camera parameters. These parameters can be calculated either through a pattern-based calibration procedure, which requires an accurate knowledge of the scene, or using a more flexible approach, known as camera autocalibration, which exploits point correspondences across images. While pattern-based calibration requires the presence of a calibration object, autocalibration constraints are often cast into nonlinear optimization problems which are often sensitive to both image noise and initialization. In addition, autocalibration fails for some particular motions of the camera. To overcome these problems, we propose to combine scene and autocalibration constraints and address in this thesis (a) the problem of extracting geometric information of the scene from uncalibrated images, (b) the problem of obtaining a robust estimate of the affine calibration of the camera, and (c) the problem of upgrading and refining the affine calibration into a metric one. In particular, we propose a method for identifying the major planar structures in a scene from images and another method to recognize parallel pairs of planes whenever these are available. The identified parallel planes are then used to obtain a robust estimate of both the affine and metric 3D structure of the scene without resorting to the traditional error prone calculation of vanishing points. We also propose a refinement method which, unlike existing ones, is capable of simultaneously incorporating plane parallelism and perpendicularity constraints in the autocalibration process. Our experiments demonstrate that the proposed methods are robust to image noise and provide satisfactory results

    3D Reconstruction Using a Stereo Vision System with Simplified Inter-Camera Geometry

    Get PDF
    This thesis addresses the relationship between camera configuration and 3D Euclidean reconstruction. Simulations have been conducted and have shown that when error is present, the larger rotation angle, the worse the reconstruction quality. When rotation is avoided, errors in the intrinsic parameters do not affect the 3D reconstruction in a significant way. Therefore, it is suggested to minimize or avoid rotation when constructing a stereo vision system. Once this configuration is applied, inaccurate intrinsic parameters, even without the prior information of intrinsic parameters, can also yield good reconstruction quality. The configuration of pure translation also provides a framework, which can be used to compute elements of intrinsic parameters with an additional geometry constraint. The perpendicular constraint is selected as an example. Focal length can be recovered from this constraint by assuming the principal point is the centre of the image

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Towards A Self-calibrating Video Camera Network For Content Analysis And Forensics

    Get PDF
    Due to growing security concerns, video surveillance and monitoring has received an immense attention from both federal agencies and private firms. The main concern is that a single camera, even if allowed to rotate or translate, is not sufficient to cover a large area for video surveillance. A more general solution with wide range of applications is to allow the deployed cameras to have a non-overlapping field of view (FoV) and to, if possible, allow these cameras to move freely in 3D space. This thesis addresses the issue of how cameras in such a network can be calibrated and how the network as a whole can be calibrated, such that each camera as a unit in the network is aware of its orientation with respect to all the other cameras in the network. Different types of cameras might be present in a multiple camera network and novel techniques are presented for efficient calibration of these cameras. Specifically: (i) For a stationary camera, we derive new constraints on the Image of the Absolute Conic (IAC). These new constraints are shown to be intrinsic to IAC; (ii) For a scene where object shadows are cast on a ground plane, we track the shadows on the ground plane cast by at least two unknown stationary points, and utilize the tracked shadow positions to compute the horizon line and hence compute the camera intrinsic and extrinsic parameters; (iii) A novel solution to a scenario where a camera is observing pedestrians is presented. The uniqueness of formulation lies in recognizing two harmonic homologies present in the geometry obtained by observing pedestrians; (iv) For a freely moving camera, a novel practical method is proposed for its self-calibration which even allows it to change its internal parameters by zooming; and (v) due to the increased application of the pan-tilt-zoom (PTZ) cameras, a technique is presented that uses only two images to estimate five camera parameters. For an automatically configurable multi-camera network, having non-overlapping field of view and possibly containing moving cameras, a practical framework is proposed that determines the geometry of such a dynamic camera network. It is shown that only one automatically computed vanishing point and a line lying on any plane orthogonal to the vertical direction is sufficient to infer the geometry of a dynamic network. Our method generalizes previous work which considers restricted camera motions. Using minimal assumptions, we are able to successfully demonstrate promising results on synthetic as well as on real data. Applications to path modeling, GPS coordinate estimation, and configuring mixed-reality environment are explored

    Cumulative index to NASA Tech Briefs, 1963-1967

    Get PDF
    Cumulative index to NASA survey on technology utilization of aerospace research outpu
    corecore