8 research outputs found

    Towards A Self-calibrating Video Camera Network For Content Analysis And Forensics

    Get PDF
    Due to growing security concerns, video surveillance and monitoring has received an immense attention from both federal agencies and private firms. The main concern is that a single camera, even if allowed to rotate or translate, is not sufficient to cover a large area for video surveillance. A more general solution with wide range of applications is to allow the deployed cameras to have a non-overlapping field of view (FoV) and to, if possible, allow these cameras to move freely in 3D space. This thesis addresses the issue of how cameras in such a network can be calibrated and how the network as a whole can be calibrated, such that each camera as a unit in the network is aware of its orientation with respect to all the other cameras in the network. Different types of cameras might be present in a multiple camera network and novel techniques are presented for efficient calibration of these cameras. Specifically: (i) For a stationary camera, we derive new constraints on the Image of the Absolute Conic (IAC). These new constraints are shown to be intrinsic to IAC; (ii) For a scene where object shadows are cast on a ground plane, we track the shadows on the ground plane cast by at least two unknown stationary points, and utilize the tracked shadow positions to compute the horizon line and hence compute the camera intrinsic and extrinsic parameters; (iii) A novel solution to a scenario where a camera is observing pedestrians is presented. The uniqueness of formulation lies in recognizing two harmonic homologies present in the geometry obtained by observing pedestrians; (iv) For a freely moving camera, a novel practical method is proposed for its self-calibration which even allows it to change its internal parameters by zooming; and (v) due to the increased application of the pan-tilt-zoom (PTZ) cameras, a technique is presented that uses only two images to estimate five camera parameters. For an automatically configurable multi-camera network, having non-overlapping field of view and possibly containing moving cameras, a practical framework is proposed that determines the geometry of such a dynamic camera network. It is shown that only one automatically computed vanishing point and a line lying on any plane orthogonal to the vertical direction is sufficient to infer the geometry of a dynamic network. Our method generalizes previous work which considers restricted camera motions. Using minimal assumptions, we are able to successfully demonstrate promising results on synthetic as well as on real data. Applications to path modeling, GPS coordinate estimation, and configuring mixed-reality environment are explored

    Morphology-based landslide monitoring with an unmanned aerial vehicle

    Get PDF
    PhD ThesisLandslides represent major natural phenomena with often disastrous consequences. Monitoring landslides with time-series surface observations can help mitigate such hazards. Unmanned aerial vehicles (UAVs) employing compact digital cameras, and in conjunction with Structure-from-Motion (SfM) and modern Multi-View Stereo (MVS) image matching approaches, have become commonplace in the geoscience research community. These methods offer a relatively low-cost and flexible solution for many geomorphological applications. The SfM-MVS pipeline has expedited the generation of digital elevation models at high spatio-temporal resolution. Conventionally ground control points (GCPs) are required for co-registration. This task is often expensive and impracticable considering hazardous terrain. This research has developed a strategy for processing UAV visible wavelength imagery that can provide multi-temporal surface morphological information for landslide monitoring, in an attempt to overcome the reliance on GCPs. This morphological-based strategy applies the attribute of curvature in combination with the scale-invariant feature transform algorithm, to generate pseudo GCPs. Openness is applied to extract relatively stable regions whereby pseudo GCPs are selected. Image cross-correlation functions integrated with openness and slope are employed to track landslide motion with subsequent elevation differences and planimetric surface displacements produced. Accuracy assessment evaluates unresolved biases with the aid of benchmark datasets. This approach was tested in the UK, in two sites, first in Sandford with artificial surface change and then in an active landslide at Hollin Hill. In Sandford, the strategy detected a ±0.120 m 3D surface change from three-epoch SfM-MVS products derived from a consumer-grade UAV. For the Hollin Hill landslide six-epoch datasets spanning an eighteen-month duration period were used, providing a ± 0.221 m minimum change. Annual displacement rates of dm-level were estimated with optimal results over winter periods. Levels of accuracy and spatial resolution comparable to previous studies demonstrated the potential of the morphology-based strategy for a time-efficient and cost-effective monitoring at inaccessible areas

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore