18,346 research outputs found

    Real-time Spatial Detection and Tracking of Resources in a Construction Environment

    Get PDF
    Construction accidents with heavy equipment and bad decision making can be based on poor knowledge of the site environment and in both cases may lead to work interruptions and costly delays. Supporting the construction environment with real-time generated three-dimensional (3D) models can help preventing accidents as well as support management by modeling infrastructure assets in 3D. Such models can be integrated in the path planning of construction equipment operations for obstacle avoidance or in a 4D model that simulates construction processes. Detecting and guiding resources, such as personnel, machines and materials in and to the right place on time requires methods and technologies supplying information in real-time. This paper presents research in real-time 3D laser scanning and modeling using high range frame update rate scanning technology. Existing and emerging sensors and techniques in three-dimensional modeling are explained. The presented research successfully developed computational models and algorithms for the real-time detection, tracking, and three-dimensional modeling of static and dynamic construction resources, such as workforce, machines, equipment, and materials based on a 3D video range camera. In particular, the proposed algorithm for rapidly modeling three-dimensional scenes is explained. Laboratory and outdoor field experiments that were conducted to validate the algorithm’s performance and results are discussed

    How to Track Protists in Three Dimensions

    Get PDF
    We present an apparatus optimized for tracking swimming microorganisms in the size range 10-1000 microns, in three dimensions (3D), far from surfaces, and with negligible background convective fluid motion. CCD cameras attached to two long working distance microscopes synchronously image the sample from two perpendicular directions, with narrowband dark-field or bright-field illumination chosen to avoid triggering a phototactic response. The images from the two cameras can be combined to yield 3D tracks of the organism. Using additional, highly directional broad-spectrum illumination with millisecond timing control the phototactic trajectories in 3D of organisms ranging from Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic interactions can also be investigated without convective interference. Minimal modifications to the apparatus allow for studies of chemotaxis and other taxes.Comment: 8 pages, 7 figure

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    GRAVITY: the Calibration Unit

    Full text link
    We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creates two artificial stars on four beams, and dispose of four delay lines with an internal metrology. It also includes artificial stars for the tip-tilt and pupil guiding systems, as well as four metrology pick-up diodes, for tests and calibration of the corresponding sub-systems. The calibration unit also hosts the reference targets to align GRAVITY to the VLTI, and the safety shutters to avoid the metrology light to propagate in the VLTI-lab. We present the results of the characterisation and validtion of these differrent sub-units.Comment: 12 pages, 11 figures. Proceeding of SPIE 9146 "Optical and Infrared Interferometry IV

    Discovery of a Young L Dwarf Binary, SDSS J224953.47+004404.6AB

    Full text link
    We report discovery of a young 0.32" L dwarf binary, SDSS J2249+0044AB, found as the result of a Keck LGSAO imaging survey of young field brown dwarfs. Weak K, Na, and FeH features as well as strong VO absorption in the integrated-light J-band spectrum indicate a young age for the system. From spatially resolved K-band spectra we determine spectral types of L3 and L5 for components A and B, respectively. SDSS J2249+0044A is spectrally very similar to G196-3B, an L3 companion to a young M2.5 field dwarf. Thus, we adopt 100 Myr (the age estimate of the G196-3 system) as the age of SDSS J2249+0044AB, but ages of 12-790 Myr are possible. By comparison to G196-3B, we estimate a distance to SDSS J2249+0044AB of 54 +- 16 pc and infer a projected separation of 17 +- 5 AU for the binary. Comparison of the luminosities to evolutionary models at an age of 100 Myr yields masses of 0.029 and 0.022 Msun for SDSS J2249+0044A and B, respectively. Over the possible ages of the system (12-790 Myr), the mass of SDSS J2249+0044A could range from 0.011 to 0.070 Msun and the mass of SDSS J2249+0044B could range from 0.009 to 0.065 Msun. Evolutionary models predict that either component could be burning deuterium, which could result in a mass ratio as low as 0.4, or alternatively, a reversal in the luminosities of the binary. We find a likely proper motion companion, GSC 00568-01752, which lies 48.9" away (2600 AU) and has SDSS+2MASS colors consistent with an early M dwarf. The photometric distance to GSC 00568-01752 is 53 +- 15 pc, in agreement with our distance estimate for SDSS J2249+0044AB. The space motion of SDSS J2249+0044AB shows no obvious coincidence with known young moving groups. The unusually red near-IR colors, young age, and low masses of the binary make it an important template for studying planetary-mass objects found by direct imaging surveys.Comment: revised, accepted versio

    Spectral Typing of Late Type Stellar Companions to Young Stars from Low Dispersion Near-Infrared Integral Field Unit Data

    Get PDF
    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R\sim30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison we test the accuracy and consistency of spectral type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.Comment: Accepted to Astronomical Journal, 25 pages, 8 figure

    Identification of A-colored Stars and Structure in the Halo of the Milky Way from SDSS Commissioning Data

    Get PDF
    A sample of 4208 objects with magnitude 15 < g* < 22 and colors of main sequence A stars has been selected from 370 square degrees of Sloan Digital Sky Survey (SDSS) commissioning observations. The data is from two long, narrow stripes, each with an opening angle of greater than 60 deg, at Galactic latitudes 36 < abs(b) < 63 on the celestial equator. An examination of the sample's distribution shows that these stars trace considerable substructure in the halo. Large overdensities of A-colored stars in the North at (l,b,R) = (350, 50, 46 kpc) and in the South at (157, -58, 33 kpc) and extending over tens of degrees are present in the halo of the Milky Way. Using photometry to separate the stars by surface gravity, both structures are shown to contain a sequence of low surface gravity stars consistent with identification as a blue horizontal branch (BHB). Both structures also contain a population of high surface gravity stars two magnitudes fainter than the BHB stars, consistent with their identification as blue stragglers (BSs). From the numbers of detected BHB stars, lower limits to the implied mass of the structures are 6x10^6 M_sun and 2x10^6 M_sun. The fact that two such large clumps have been detected in a survey of only 1% of the sky indicates that such structures are not uncommon in the halo. Simple spheroidal parameters are fit to a complete sample of the remaining unclumped BHB stars and yield (at r < 40 kpc) a fit to a halo distribution with flattening (c/a = 0.65+/-0.2) and a density falloff exponent of alpha = -3.2+/-0.3.Comment: AASTeX v5_0, 26 pages, 1 table, 20 figures, ApJ accepte

    A rotorcraft flight database for validation of vision-based ranging algorithms

    Get PDF
    A helicopter flight test experiment was conducted at the NASA Ames Research Center to obtain a database consisting of video imagery and accurate measurements of camera motion, camera calibration parameters, and true range information. The database was developed to allow verification of monocular passive range estimation algorithms for use in the autonomous navigation of rotorcraft during low altitude flight. The helicopter flight experiment is briefly described. Four data sets representative of the different helicopter maneuvers and the visual scenery encountered during the flight test are presented. These data sets will be made available to researchers in the computer vision community
    corecore